Abstract

This paper proposes a three degrees-of-freedom tensegrity structure with a mechanism inspired by the ligamentous structure of the shoulder. The proposed mechanism simulates the wide motion ranges of the human shoulder joint and is composed of 3 rigid bodies and 16 steel wires with 3 mutually perpendicular rotating axes. Since it belongs to the class 1 tensegrity structure that the rigid bodies do not make any contact with each other, the joint has a certain amount of flexibility, which not only can help protect its mechanism from external impacts but also can prevent human injury that might happen when the mechanism and humans interact each other. Moreover, the proposed mechanism can be manufactured using fewer materials than a fully rigid mechanism, and thus, it can be made in a lightweight fashion and reduce the inertial effects as well. Finally, to actuate the robotic shoulder, the cables connected to each motor are able to drive the rotating shafts of the joint mechanism.

References

1.
Guo
,
J.
,
Xiang
,
C.
,
Helps
,
T.
,
Taghavi
,
M.
, and
Rossiter
,
J.
,
2018
, “
Electroactive Textile Actuators for Wearable and Soft Robots
,”
IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 25–27
, pp.
339
343
.
2.
Kim
,
J. H.
,
Li
,
Z. Y.
,
Choi
,
H. R.
,
Moon
,
H.
, and
Koo
,
J. C.
,
2016
, “
Design of Flexible Joint Using in Soft Robot Hand
,”
13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Xian, China
,
Aug. 19–22
, pp.
101
103
.
3.
Somm
,
L.
,
Hahn
,
D.
,
Kumar
,
N.
, and
Coros
,
S.
,
2019
, “
Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots With Embedded Sensing
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
761
768
.
4.
Florez
,
J. M.
,
Shih
,
B.
,
Bai
,
Y.
, and
Paik
,
J. K.
,
2014
, “
Soft Pneumatic Actuators for Legged Locomotion
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
,
Bali, Indonesia
,
Dec. 5–10
, pp.
27
34
.
5.
O’Neill
,
C. T.
,
Phipps
,
N. S.
,
Cappello
,
L.
,
Paganoni
,
S.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Wearable Robot for the Shoulder: Design, Characterization, and Preliminary Testing
,”
International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, pp.
1672
1678
.
6.
Qi
,
R.
,
Lam
,
T. L.
, and
Xu
,
Y.
,
2014
, “
Mechanical Design and Implementation of a Soft Inflatable Robot Arm for Safe Human–Robot Interaction
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
June 1–5
, pp.
3490
3495
.
7.
Jantsch
,
M.
,
Wittmeier
,
S.
,
Dalamagkidis
,
K.
,
Panos
,
A.
,
Volkart
,
F.
, and
Knoll
,
A.
,
2013
, “
Anthrob—A Printed Anthropomimetic Robot
,”
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Atlanta, GA
,
Oct. 15–17
, pp.
342
347
.
8.
Nakanishi
,
Y.
,
Asano
,
Y.
,
Kozuki
,
T.
,
Mizoguchi
,
H.
,
Motegi
,
Y.
,
Osada
,
M.
,
Shirai
,
T.
,
Urata
,
J.
,
Okada
,
K.
, and
Inaba
,
M.
,
2012
, “
Design Concept of Detail Musculoskeletal Humanoid Kenshiro
,”
12th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Osaka, Japan
,
Nov. 29–30
, pp.
1
6
.
9.
Lessard
,
S.
,
Bruce
,
J.
,
Jung
,
E.
,
Teodorescu
,
M.
,
Sunspiral
,
V.
, and
Agogino
,
A.
,
2016
, “
A Lightweight, Multi-Axis Compliant Tensegrity Joint
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
630
635
.
10.
Lessard
,
S.
,
Castro
,
D.
,
Asper
,
W.
,
Chopra
,
S. D.
,
Teodorescu
,
M.
,
Sunspiral
,
V.
, and
Agogino
,
A.
,
2016
, “
A Bio-Inspired Tensegrity Manipulator With Multi-DOF, Structurally Compliant Joints
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
5515
5520
.
11.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
03100r9
.
12.
Lessanibahri
,
S.
,
Cardou
,
P.
, and
Caro
,
S.
,
2020
, “
A Cable-Driven Parallel Robot With an Embedded Tilt-Roll Wrist
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021107
.
13.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2012
, “
Force-Closure of Spring-Loaded Cable-Driven Open Chains: Minimum Number of Cables Required & Influence of Spring Placements
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, MN
,
May 14–19
, pp.
1482
1487
.
14.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
922
931
.
15.
Yang
,
Y.
,
Chen
,
W.
,
Wu
,
X.
, and
Chen
,
Q.
,
2010
, “
Stiffness Analysis of 3-DOF Spherical Joint Based on Cable-Driven Humanoid Arm
,”
5th IEEE Conference on Industrial Electronics and Applications
,
Taichung, Taiwan
,
June 15–17
, pp.
99
103
.
16.
Lum
,
G. Z.
,
Mustafa
,
S. K.
,
Lim
,
H. R.
,
Lim
,
W. B.
,
Yang
,
G.
, and
Yeo
,
S. H.
,
2010
, “
Design and Motion Control of a Cable-Driven Dexterous Robotic Arm
,”
IEEE Conference on Sustainable Utilization and Development in Engineering and Technology
, pp.
106
111
.
17.
Lugo
,
J. H.
,
Ramadoss
,
V.
,
Zoppi
,
M.
,
Cannata
,
G.
, and
Molfino
,
R.
,
2019
, “
Modeling of a Cable-Based Revolute Joint Using Biphasic Media Variable Stiffness Actuation
,”
3rd IEEE International Conference on Robotic Computing (IRC)
,
Naples, Italy
,
Feb. 25–27
, pp.
618
623
.
18.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
New York
.
19.
Levangie
,
P. K.
, and
Norkin
,
C. C.
,
2011
,
Joint Structure and Function: A Comprehensive Analysis
, 5th ed.,
F.A. Davis/Jaypee Brothers
,
New Delhi
.
20.
Stainless Steel Cable, Bare 7x49, Commercial
, http://www.savacable.com/stainless-steel-cable-bare-7x49-commercial/, Accessed July 31, 2021.
21.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
,
Cambridge, MA
.
22.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2002
,
Feedback Control of Dynamic Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.