Abstract

An algorithm to search for a kinematically desired robotic grasp pose with rolling contacts is presented. A manipulability measure is defined to characterize the grasp for multi-fingered robotic handling. The methodology can be used to search for the goal grasp pose with a manipulability ellipsoid close to the desired one. The proposed algorithm is modified to perform rolling-based relocation under kinematic constraints of the robotic fingertips. The search for the optimal grasp pose and the improvement of the grasp pose by relocation are based on the reduction of the geodesic distance between the current and the target manipulability matrices. The algorithm also derives paths of the fingertip on the object surface in order to achieve the goal pose. An algorithmic option for the process of searching for a suitable grasp configuration is hence achieved.

References

1.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
, Vol.
1
,
San Francisco, CA
,
Apr. 24–28
,
IEEE
, pp.
348
353
.
2.
Asndrychowicz
,
O. M.
,
Baker
,
B.
,
Chociej
,
M.
,
Jozefowicz
,
R.
,
McGrew
,
B.
,
Pachocki
,
J.
,
Petron
,
A.
, et al.,
2020
, “
Learning Dexterous In-Hand Manipulation
,”
Int. J. Rob. Res.
,
39
(
1
), pp.
3
20
.
3.
Vassura
,
G.
, and
Bicchi
,
A.
,
1993
, “Whole-Hand Manipulation: Design of an Articulated Hand Exploiting All Its Parts to Increase Dexterity,”
Robots and Biological Systems: Towards a New Bionics?
,
P.
Dario
,
G.
Sandini
, and
P.
Aebischer
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
165
177
.
4.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-Hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
.
5.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for In-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.
6.
Govindan
,
N.
, and
Thondiyath
,
A.
,
2019
, “
Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051012
.
7.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
8.
Xu
,
J.
,
Koo
,
T.-K. J.
, and
Li
,
Z.
,
2010
, “
Sampling-Based Finger Gaits Planning for Multifingered Robotic Hand
,”
Auton. Robots
,
28
(
4
), pp.
385
402
.
9.
Fan
,
Y.
,
Gao
,
W.
,
Chen
,
W.
, and
Tomizuka
,
M.
,
2017
, “
Real-Time Finger Gaits Planning for Dexterous Manipulation
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
12765
12772
.
10.
Fan
,
Y.
,
Tang
,
T.
,
Lin
,
H.-C.
,
Zhao
,
Y.
, and
Tomizuka
,
M.
,
2017
, “
Real-Time Robust Finger Gaits Planning Under Object Shape and Dynamics Uncertainties
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, British Columbia, Canada
, Sept. 24–28,
IEEE
, pp.
1267
1273
.
11.
Sundaralingam
,
B.
, and
Hermans
,
T.
,
2018
, “
Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane
,
May 21–25
,
IEEE
, pp.
231
238
.
12.
Leveroni
,
S.
, and
Salisbury
,
K.
,
1995
, “
Reorienting Objects With a Robot Hand Using Grasp Gaits
,”
Robotics Research
,
Herrsching, Germany
,
Oct. 21–24
, Springer, pp.
39
51
.
13.
Harmati
,
I.
,
Lantos
,
B.
, and
Payandeh
,
S.
,
2001
, “
On Object Manipulation Methods Using Finger Relocation
,”
Proceedings of the 10th IEEE International Conference on Advanced Robotics (ICAR’01)
,
Budapest, Hungary
,
Aug. 22–25
,
IEEE
, pp.
613
618
.
14.
Paljug
,
E.
,
Yun
,
X.
, and
Kumar
,
V.
,
1994
, “
Control of Rolling Contacts in Multi-Arm Manipulation
,”
IEEE Trans. Rob. Autom.
,
10
(
4
), pp.
441
452
.
15.
Bicchi
,
A.
, and
Sorrentino
,
R.
,
1995
, “
Dexterous Manipulation Through Rolling
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Nagoya, Japan
,
May 21–27
,
IEEE
, pp.
452
457
.
16.
Maekawa
,
H.
,
Tanie
,
K.
, and
Komoriya
,
K.
,
1995
, “
Tactile Sensor Based Manipulation of an Unknown Object by a Multifingered Hand With Rolling Contact
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Nagoya, Japan
,
May 21–27
,
IEEE
, pp.
743
750
.
17.
Shi
,
J.
,
Woodruff
,
J. Z.
,
Umbanhowar
,
P. B.
, and
Lynch
,
K. M.
,
2017
, “
Dynamic In-Hand Sliding Manipulation
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
778
795
.
18.
Spiers
,
A. J.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2018
, “
Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation Via Gripping and Sliding
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
4116
4123
.
19.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2018
, “
Stable Prehensile Pushing: In-Hand Manipulation With Alternating Sticking Contacts
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane
,
May 21–25
,
IEEE
, pp.
254
261
.
20.
Dafle
,
N. C.
,
Rodriguez
,
A.
,
Paolini
,
R.
,
Tang
,
B.
,
Srinivasa
,
S. S.
,
Erdmann
,
M.
,
Mason
,
M. T.
,
Lundberg
,
I.
,
Staab
,
H.
, and
Fuhlbrigge
,
T.
,
2014
, “
Extrinsic Dexterity: In-Hand Manipulation With External Forces
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong
,
May 31–June 7
,
IEEE
, pp.
1578
1585
.
21.
Chavan-Dafle
,
N.
,
Holladay
,
R.
, and
Rodriguez
,
A.
,
2020
, “
Planar In-Hand Manipulation Via Motion Cones
,”
Int. J. Rob. Res.
,
39
(
2–3
), pp.
163
182
.
22.
Cherif
,
M.
, and
Gupta
,
K. K.
,
1999
, “
Planning Quasi-Static Fingertip Manipulations for Reconfiguring Objects
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
837
848
.
23.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Classification and Kinematic Equivalents of Contact Types for Fingertip-Based Robot Hand Manipulation
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041014
.
24.
Cloutier
,
A.
, and
Yang
,
J.
,
2018
, “
Grasping Force Optimization Approaches for Anthropomorphic Hands
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011004
.
25.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2018
, “
Workspace of Multifingered Hands Using Monte Carlo Method
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041003
.
26.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2019
, “Workspace of Multi-Fingered Robotic Hands Using Monte Carlo Method,”
Machines, Mechanism and Robotics
,
D. N.
Badodkar
, and
T. A.
Dwarakanath
, eds.,
Springer
,
Singapore
, pp.
317
327
.
27.
Li
,
Z.
, and
Sastry
,
S. S.
,
1988
, “
Task-Oriented Optimal Grasping by Multifingered Robot Hands
,”
IEEE J. Rob. Autom.
,
4
(
1
), pp.
32
44
.
28.
Ferrari
,
C.
, and
Canny
,
J. F.
,
1992
, “
Planning Optimal Grasps
,”
ICRA
, Vol.
3
,
Nice, France
,
May 12–14
, pp.
2290
2295
.
29.
Charusta
,
K.
,
Krug
,
R.
,
Dimitrov
,
D.
, and
Iliev
,
B.
,
2012
, “
Independent Contact Regions Based on a Patch Contact Model
,”
2012 IEEE International Conference on Robotics and Automation
,
Minnesota, MN
,
May 14–18
, IEEE, pp.
4162
4169
.
30.
Jeong
,
H.
, and
Cheong
,
J.
,
2012
, “
Independent Contact Region (ICR) Based In-hand Motion Planning Algorithm With Guaranteed Grasp Quality Margin
,”
2012 IEEE International Conference on Automation Science and Engineering (CASE)
,
Seoul, South Korea
,
Aug. 20–24
,
IEEE
, pp.
1089
1094
.
31.
Roa
,
M. A.
, and
Suárez
,
R.
,
2009
, “
Computation of Independent Contact Regions for Grasping 3-D Objects
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
839
850
.
32.
Liu
,
Y.-H.
,
1999
, “
Qualitative Test and Force Optimization of 3-D Frictional Form-Closure Grasps Using Linear Programming
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
163
173
.
33.
Liu
,
Y.-H.
,
2000
, “
Computing N-Finger Form-Closure Grasps on Polygonal Objects
,”
Int. J. Rob. Res.
,
19
(
2
), pp.
149
158
.
34.
Lin
,
Y.
, and
Sun
,
Y.
,
2015
, “
Task-Based Grasp Quality Measures for Grasp Synthesis
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
,
IEEE
, pp.
485
490
.
35.
Li
,
Y.
,
Fu
,
J. L.
, and
Pollard
,
N. S.
,
2007
, “
Data-Driven Grasp Synthesis Using Shape Matching and Task-Based Pruning
,”
IEEE Trans. Vis. Comput. Graph.
,
13
(
4
), pp.
732
747
.
36.
El-Khoury
,
S.
,
Li
,
M.
, and
Billard
,
A.
,
2013
, “
On the Generation of a Variety of Grasps
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1335
1349
.
37.
Roa
,
M. A.
,
Argus
,
M. J.
,
Leidner
,
D.
,
Borst
,
C.
, and
Hirzinger
,
G.
,
2012
, “
Power Grasp Planning for Anthropomorphic Robot Hands
,”
2012 IEEE International Conference on Robotics and Automation
,
Minnesota, MN
,
May 14–18
, IEEE, pp.
563
569
.
38.
Lin
,
Y.
, and
Sun
,
Y.
,
2015
, “
Grasp Planning to Maximize Task Coverage
,”
Int. J. Rob. Res.
,
34
(
9
), pp.
1195
1210
.
39.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
17
32
.
40.
Han
,
L.
,
Guan
,
Y.-S.
,
Li
,
Z.
,
Shi
,
Q.
, and
Trinkle
,
J. C.
,
1997
, “
Dextrous Manipulation With Rolling Contacts
,”
Proceedings of International Conference on Robotics and Automation
, Vol.
2
,
Albuquerque, NM
,
Apr. 20–25
,
IEEE
, pp.
992
997
.
41.
Han
,
L.
, and
Trinkle
,
J. C.
,
1998
, “
Dextrous Manipulation by Rolling and Finger Gaiting
,”
Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
, Vol.
1
,
Leuven, Belgium
,
May 16–21
,
IEEE
, pp.
730
735
.
42.
Han
,
L.
,
Li
,
Z.
,
Trinkle
,
J. C.
,
Qin
,
Z.
, and
Jiang
,
S.
,
2000
, “
The Planning and Control of Robot Dextrous Manipulation
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
, Vol.
1
,
San Francisco, CA
,
Apr. 24–28
,
IEEE
, pp.
263
269
.
43.
Sankar
,
N.
,
Kumar
,
V.
, and
Yun
,
X.
,
1996
, “
Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies
,”
J. Appl. Mech.
,
63
(
4
), pp.
974
984
.
44.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation
,”
IEEE Trans. Rob. Autom.
,
13
(
3
), pp.
364
376
.
45.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Control of Contact Interactions With Acatastatic Nonholonomic Constraints
,”
Int. J. Rob. Res.
,
16
(
3
), pp.
357
374
.
46.
Cui
,
L.
, and
Dai
,
J. S.
,
2015
, “
From Sliding–Rolling Loci to Instantaneous Kinematics: An Adjoint Approach
,”
Mech. Mach. Theory
,
85
, pp.
161
171
.
47.
Cui
,
L.
, and
Dai
,
J. S.
,
2010
, “
A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
383
388
.
48.
Cui
,
L.
, and
Dai
,
J. S.
,
2015
, “
A Polynomial Formulation of Inverse Kinematics of Rolling Contact
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041003
.
49.
Minami
,
M.
,
Li
,
X.
,
Matsuno
,
T.
, and
Yanou
,
A.
,
2016
, “
Dynamic Reconfiguration Manipulability for Redundant Manipulators
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061004
.
50.
Asada
,
H.
,
1983
, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst. Meas. Control
,
105
(
3
), pp.
131
142
.
51.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
52.
Zhang
,
T.
,
Minami
,
M.
,
Yasukura
,
O.
, and
Song
,
W.
,
2013
, “
Reconfiguration Manipulability Analyses for Redundant Robots
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041001
.
53.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.
54.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1991
, “
Reformulation of Dynamic Manipulability Ellipsoid for Robotic Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
3
,
Sacramento, CA
,
Apr. 9–11
, pp.
2192
2197
.
55.
Dodziuk
,
J.
,
1982
, “
Eigenvalues of the Laplacian on Forms
,”
Proc. Am. Math. Soc.
,
85
(
3
), pp.
437
443
.
56.
Jaquier
,
N.
,
Rozo
,
L. D.
,
Caldwell
,
D. G.
, and
Calinon
,
S.
,
2018
, “
Geometry-Aware Tracking of Manipulability Ellipsoids
,”
Robotics: Science and Systems
,
Pennsylvania, PA
,
June 26–30
.
57.
Angulo
,
J.
,
2014
, “
Structure Tensor Image Filtering Using Riemannian L1 and L Infinity Center-of-Mass
,”
Image Anal. Stereol.
,
33
(
2
), pp.
95
105
.
58.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
.
59.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Mach. Syst.
,
10
(
2
), pp.
47
53
.
60.
Kebria
,
P. M.
,
Al-Wais
,
S.
,
Abdi
,
H.
, and
Nahavandi
,
S.
,
2016
, “
Kinematic and Dynamic Modelling of UR5 Manipulator
,”
2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Budapest, Hungary
,
Oct. 9–12
,
IEEE
, pp.
004229
004234
.
You do not currently have access to this content.