Abstract

Industrial robots are highly desirable in applications including manufacturing and surgery. However, errors in the modeling of the kinematics of robotic arms limit their positional accuracy in industrial applications. Specifically, analytical kinematic models of the robot arm suffer from errors in coefficient calibrations and the inability to account for effects including gear backlash. However, statistical modeling methods require an extensive amount of points for calibration, which is infeasible in practical industrial environments. Hence, this paper describes, develops, and experimentally validates a hybrid modeling methodology combining both analytical and statistical methods to describe the robot kinematics in an intuitive manner that is easily adaptable for small- and medium-sized industries. By formulating an explicitly described analytical kinematic model as a prior mean distribution of a Gaussian process, the prior distribution can be updated with experimental data using statistical Bayesian Inference, thus enabling more accurate description of the robot kinematics with fewer data points. The hybrid model is demonstrated to outperform an analytical model, a neural network model, and a Gaussian Process Regression model with no prior distribution in predicting both the forward and inverse kinematics of a UR5 and UR10 robot arm. Also, the error propagation of the inverse kinematic solutions is studied. In addition, the testing framework used in this work can be used as a standardized benchmark to evaluate alternative kinematic models.

References

1.
Sen
,
D. K.
,
Datta
,
S.
,
Patel
,
S. K.
, and
Mahapatra
,
S. S.
,
2015
, “
Multi-Criteria Decision Making Towards Selection of Industrial Robot
,”
Bench.: Int. J.
,
22
(
3
), pp.
465
487
.
2.
Singh
,
S.
,
Singla
,
A.
,
Singh
,
A.
,
Soni
,
S.
, and
Verma
,
S.
,
2016
, “
Kinematic Modelling of a Five-DOFs Spatial Manipulator Used in Robot-Assisted Surgery
,”
Perspect. Sci.
,
8
, pp.
550
553
.
3.
Dahari
,
M.
, and
Tan
,
J.-D.
,
2011
, “
Forward and Inverse Kinematics Model for Robotic Welding Process Using Kr-16ks Kuka Robot
,”
2011 Fourth International Conference on Modeling, Simulation and Applied Optimization
,
IEEE
, pp.
1
6
.
4.
Kaldestad
,
K. B.
,
Tyapin
,
I.
, and
Hovland
,
G.
,
2015
, “
Robotic Face Milling Path Correction and Vibration Reduction
,”
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
IEEE
, pp.
543
548
.
5.
Kim
,
C.
,
Espalin
,
D.
,
Cuaron
,
A.
,
Perez
,
M. A.
,
Lee
,
M.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Cooperative Tool Path Planning for Wire Embedding on Additively Manufactured Curved Surfaces Using Robot Kinematics
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021003
.
6.
Manocha
,
D.
, and
Canny
,
J. F.
,
1994
, “
Efficient Inverse Kinematics for General 6r Manipulators
,”
IEEE. Trans. Rob. Autom.
,
10
(
5
), pp.
648
657
.
7.
Liu
,
Y.
,
Kong
,
M.
,
Wan
,
N.
, and
Ben-Tzvi
,
P.
,
2018
, “
A Geometric Approach to Obtain the Closed-Form Forward Kinematics of H4 Parallel Robot
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051013
.
8.
López-Custodio
,
P.
,
Dai
,
J.
,
Fu
,
R.
, and
Jin
,
Y.
,
2020
, “
Kinematics and Constraints of the Exechon Robot Accounting Offsets Due to Errors in the Base Joint Axes
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021109
.
9.
Chesser
,
P. C.
,
Wang
,
P. L.
,
Vaughan
,
J. E.
,
Lind
,
R. F.
, and
Post
,
B. K.
,
2021
, “
Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021010
.
10.
Wang
,
L.
,
Del Giudice
,
G.
, and
Simaan
,
N.
,
2019
, “
Simplified Kinematics of Continuum Robot Equilibrium Modulation Via Moment Coupling Effects and Model Calibration
,”
J. Mech. Rob.
,
11
(
5
), p.
44162
.
11.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control.
12.
Patil
,
A.
,
Kulkarni
,
M.
, and
Aswale
,
A.
,
2017
, “
Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using Dh Parameters
,”
2017 IEEE International Conference on Real-time Computing and Robotics (RCAR)
,
IEEE
, pp.
688
693
.
13.
Jiang
,
Z.
,
Zhou
,
W.
,
Li
,
H.
,
Mo
,
Y.
,
Ni
,
W.
, and
Huang
,
Q.
,
2017
, “
A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm
,”
IEEE. Trans. Ind. Electron.
,
65
(
4
), pp.
3337
3345
.
14.
Ranjan
,
A.
,
Kumar
,
U.
,
Laxmi
,
V.
, and
Udai
,
A. D.
,
2017
, “
Identification and Control of NAO Humanoid Robot to Grasp An Object Using Monocular Vision
,”
2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT)
,
IEEE
, pp.
1
5
.
15.
Zhou
,
J.
,
Nguyen
,
H.-N.
, and
Kang
,
H.-J.
,
2014
, “
Simultaneous Identification of Joint Compliance and Kinematic Parameters of Industrial Robots
,”
Int. J. Precis. Eng. Manuf.
,
15
(
11
), pp.
2257
2264
.
16.
He
,
J.
,
Gao
,
F.
, and
Sun
,
Q.
,
2019
, “
Design and Kinematic Analysis of a Novel Hybrid Kinematic Mechanism with Seven-degrees-of-freedom and Variable Topology for Operation in Space
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011003
.
17.
Cohen
,
A.
, and
Shoham
,
M.
,
2016
, “
Application of Hyper-dual Numbers to Multibody Kinematics
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011015
.
18.
Sun
,
J.-D.
,
Cao
,
G.-Z.
,
Li
,
W.-B.
,
Liang
,
Y.-X.
, and
Huang
,
S.-D.
,
2017
, “
Analytical Inverse Kinematic Solution Using the Dh Method for a 6-DOF Robot
,”
2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
IEEE
, pp.
714
716
.
19.
Kebria
,
P. M.
,
Al-Wais
,
S.
,
Abdi
,
H.
, and
Nahavandi
,
S.
,
2016
, “
Kinematic and Dynamic Modelling of Ur5 Manipulator
,”
2016 IEEE International Conference on Systems, Man
,
and Cybernetics (SMC), IEEE
, p.
004229
.
20.
Duleba
,
I.
, and
Opalka
,
M.
,
2013
, “
A Comparison of Jacobian-based Methods of Inverse Kinematics for Serial Robot Manipulators
,”
Int. J. Appl. Math. Comput. Sci.
,
23
(
2
), pp.
373
382
.
21.
Colomé
,
A.
, and
Torras
,
C.
,
2014
, “
Closed-loop Inverse Kinematics for Redundant Robots: Comparative Assessment and Two Enhancements
,”
IEEE/ASME Trans. Mech.
,
20
(
2
), pp.
944
955
.
22.
Fu
,
Z.
,
Yang
,
W.
, and
Yang
,
Z.
,
2013
, “
Solution of Inverse Kinematics for 6r Robot Manipulators with Offset Wrist Based on Geometric Algebra
,”
J. Mech. Rob.
,
5
(
3
), p.
0310081
.
23.
Ferrentino
,
E.
, and
Chiacchio
,
P.
,
2020
, “
On the Optimal Resolution of Inverse Kinematics for Redundant Manipulators Using a Topological Analysis
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031002
.
24.
Conrad
,
K. L.
,
Shiakolas
,
P. S.
, and
Yih
,
T.
,
2000
, “
Robotic Calibration Issues: Accuracy, Repeatability and Calibration
,”
Proceedings of the 8th Mediterranean Conference on Control and Automation (MED2000)
,
Rio, Patras, Greece
, Vol.
1719
.
25.
Ruderman
,
M.
,
Hoffmann
,
F.
, and
Bertram
,
T.
,
2009
, “
Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash
,”
IEEE. Trans. Ind. Electron.
,
56
(
10
), pp.
3840
3847
.
26.
Shalev-Shwartz
,
S.
, and
Ben-David
,
S.
,
2014
,
Understanding Machine Learning: From Theory to Algorithms
,
Cambridge University Press
,
New York
.
27.
Dereli
,
S.
, and
Köker
,
R.
,
2020
, “
A Meta-Heuristic Proposal for Inverse Kinematics Solution of 7-DOF Serial Robotic Manipulator: Quantum Behaved Particle Swarm Algorithm
,”
Artificial Intel. Rev.
,
53
(
2
), pp.
949
964
.
28.
Raja
,
R.
,
Dutta
,
A.
, and
Dasgupta
,
B.
,
2019
, “
Learning Framework for Inverse Kinematics of a Highly Redundant Mobile Manipulator
,”
Rob. Auton. Syst.
,
120
, p.
103245
.
29.
Alebooyeh
,
M.
, and
Urbanic
,
R. J.
,
2019
, “
Neural Network Model for Identifying Workspace, Forward and Inverse Kinematics of the 7-DOF YuMi 14000 Abb Collaborative Robot
,”
IFAC-PapersOnLine
,
52
(
10
), pp.
176
181
.
30.
Reinhart
,
R. F.
,
Shareef
,
Z.
, and
Steil
,
J. J.
,
2017
, “
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control
,”
Sensors
,
17
(
2
), p.
311
.
31.
Chen
,
J.
, and
Lau
,
H. Y.
,
2016
, “
Inverse Kinematics Learning for Redundant Robot Manipulators with Blending of Support Vector Regression Machines
,”
2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)
,
IEEE
, pp.
267
272
.
32.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
You
,
Z.
,
2010
, “
Performance Comparison of Three Planar 3-dof Parallel Manipulators With 4-rrr, 3-rrr and 2-rrr Structures
,”
Mechatronics
,
20
(
4
), pp.
510
517
.
33.
Rasmussen
,
C. E.
,
2003
, “Gaussian Processes in Machine Learning,”
Summer School on Machine Learning
,
MIT Press
,
Boston, MA
, pp.
63
71
.
34.
Zhou
,
Z.
,
Ong
,
Y. S.
,
Nguyen
,
M. H.
, and
Lim
,
D.
,
2005
, “
A Study on Polynomial Regression and Gaussian Process Global Surrogate Model in Hierarchical Surrogate-assisted Evolutionary Algorithm
,”
2005 IEEE Congress on Evolutionary Computation
, Vol.
3
,
IEEE
, pp.
2832
2839
.
35.
Marvel
,
J. A.
, and
Van Wyk
,
K.
,
2016
, “
Simplified Framework for Robot Coordinate Registration for Manufacturing Applications
,”
2016 IEEE International Symposium on Assembly and Manufacturing (ISAM)
, pp.
56
63
.
36.
Universal Robot
,
2019
.
Kinematic Calibration Manual for e-Series
.
37.
Dennis Jr
,
J. E.
,
Gay
,
D. M.
, and
Walsh
,
R. E.
,
1981
, “
An Adaptive Nonlinear Least-squares Algorithm
,”
ACM Trans. Mathe. Soft. (TOMS)
,
7
(
3
), pp.
348
368
.
38.
Fang
,
G.
,
Wang
,
X.
,
Wang
,
K.
,
Lee
,
K.-H.
,
Ho
,
J. D.
,
Fu
,
H.-C.
,
Fu
,
D. K. C.
, and
Kwok
,
K.-W.
,
2019
, “
Vision-based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
1194
1201
.
39.
Schneider
,
M.
, and
Ertel
,
W.
,
2010
, “
Robot Learning by Demonstration With Local Gaussian Process Regression
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan, Oct. 18–22, IEEE
, pp.
255
260
.
You do not currently have access to this content.