Abstract

The operational space control (OSC) of multilink cable-driven hyper-redundant robots (MCDHRs) is required to perform tasks in many applications. As a new coupled active-passive (CAP) MCDHR system, due to the multiple couplings between the active cables, the passive cables, the joints, and the end-effector, the OSC becomes more and more complicated. However, there is currently no robust and effective control method to solve the OSC problem of such types MCDHRs. In this paper, an OSC framework of CAP-MCDHRs using a dynamics-based iterative-learning-control (ILC) method is proposed, considering multivariate optimization. First, the multi-coupling kinematics and the series-parallel coupling dynamics equation (i.e., cable-joint-end) of the CAP-MCDHR are derived. Then, a dynamics-based trajectory tracking framework was constructed. Moreover, an OSC accuracy evaluation model based on a high-precision laser tracker was also designed. The framework allows the tracking of operational space trajectories (OSTs) online with the feasible cable tension and the joint angle. It is also shown that the tracking performance can be improved through the ILC when the desired trajectory is repeatedly performed. Finally, a simulation and an experimental hardware system are built. The results show that the proposed control framework can be easily and effectively applied to the CAP-MCDHR used in real-time.

References

1.
Peng
,
J.
,
Xu
,
W.
,
Wang
,
F.
,
Han
,
Y.
, and
Liang
,
B.
,
2021
, “
A Hybrid Hand-Eye Calibration Method for Multilink Cable-Driven Hyper-Redundant Manipulators
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
13
.
2.
Song
,
S.
,
Ge
,
H.
,
Wang
,
J.
, and
Meng
,
M. Q.-H.
,
2021
, “
Real-Time Multi-Object Magnetic Tracking for Multi-Arm Continuum Robots
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
9
.
3.
Li
,
Z.
,
Liao
,
B.
,
Xu
,
F.
, and
Guo
,
D.
,
2020
, “
A New Repetitive Motion Planning Scheme With Noise Suppression Capability for Redundant Robot Manipulators
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
50
(
12
), pp.
5244
5254
.
4.
Kelasidi
,
E.
,
Liljebäck
,
P.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2017
, “
Line-of-Sight Guidance for Path Following Control of Underwater Snake Robots: Theory and Experiments
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
610
628
.
5.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2015
, “
Inverse Dynamics of Multilink Cable-Driven Manipulators With the Consideration of Joint Interaction Forces and Moments
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
479
488
.
6.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2013
, “
Generalized Modeling of Multilink Cable-Driven Manipulators With Arbitrary Routing Using the Cable-Routing Matrix
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1102
1113
.
7.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
8.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
9.
Andrea
,
B.
, and
Nabil
,
S.
,
2016
, “
Hybrid Motion/Force Control of Multi-Backbone Continuum Robots
,”
Int. J. Robot. Res.
,
35
(
4
), pp.
422
434
.
10.
Lau
,
D.
,
Bhalerao
,
K.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2012
, “On the Task Specific Evaluation and Optimisation of Cable-Driven Manipulators,”
Advances in Reconfigurable Mechanisms and Robots I
,
J
Dai
,
M
Zoppi
, and
X
Kong
, eds.,
Springer
,
London
, pp.
707
716
.
11.
An
,
H.
,
Zhang
,
Y.
,
Yuan
,
H.
,
Xu
,
W.
, and
Wang
,
X.
,
2022
, “
Design Control and Performance of a Cable-Driving Module With External Encoder and Force Sensor for Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
014502
.
12.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2016
, “
Force Distribution With Pose-Dependent Force Boundaries for Redundantly Actuated Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041004
.
13.
Eden
,
J.
,
Lau
,
D.
,
Tan
,
Y.
, and
Oetomo
,
D.
,
2019
, “
Unilateral Manipulability Quality Indices: Generalized Manipulability Measures for Unilaterally Actuated Robots
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092305
.
14.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2011
, “
Wrench-Closure Workspace Generation for Cable Driven Parallel Manipulators Using a Hybrid Analytical-Numerical Approach
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071004
.
15.
Lau
,
D.
, and
Oetomo
,
D.
,
2016
, “
Conditions on the Cable-Routing Matrix for Wrench Closure of Multilink Cable-Driven Manipulators
,”
ASME J. Mech. Des.
,
138
(
3
), p.
032303
.
16.
Godage
,
I.
,
Medrano-Cerda
,
G.
,
Branson
,
D.
,
Guglielmino
,
E.
, and
Caldwell
,
D.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Robot. Res.
,
35
(
6
), pp.
695
722
.
17.
Mu
,
Z.
,
Chen
,
Y.
,
Li
,
Z.
,
Qian
,
H.
, and
Ding
,
N.
,
2021
, “
A Spatial Biarc Method for Inverse Kinematics and Configuration Planning of Concentric Cable-Driven Manipulators
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
, pp.
1
10
.
18.
Mu
,
Z.
,
Yuan
,
H.
,
Xu
,
W.
,
Liu
,
T.
, and
Liang
,
B.
,
2020
, “
A Segmented Geometry Method for Kinematics and Configuration Planning of Spatial Hyper-Redundant Manipulators
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
50
(
5
), pp.
1746
1756
.
19.
Yuan
,
H.
,
Zhang
,
W.
,
Dai
,
Y.
, and
Xu
,
W.
,
2021
, “
Analytical and Numerical Methods for the Stiffness Modeling of Cable-Driven Serpentine Manipulators
,”
Mech. Mach. Theory
,
156
(
3
), p.
104179
.
20.
Liu
,
T.
,
Xu
,
W.
,
Yang
,
T.
, and
Li
,
Y.
,
2021
, “
A Hybrid Active and Passive Cable-Driven Segmented Redundant Manipulator Design, Kinematics and Planning
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
930
942
.
21.
Peng
,
J.
,
Xu
,
W.
,
Liu
,
T.
,
Yuan
,
H.
, and
Liang
,
B.
,
2021
, “
End-Effector Pose and Arm Shape Synchronous Planning Methods of a Hyper-Redundant Manipulator for Spacecraft Repairing
,”
Mech. Mach. Theory
,
155
, pp.
1
25
.
22.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
10
), pp.
209
220
.
23.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
24.
Liu
,
T.
,
Mu
,
Z.
,
Wang
,
H.
,
Xu
,
W.
, and
Li
,
Y.
,
2018
, “
A Cable-Driven Redundant Spatial Manipulator with Improved Stiffness and Load Capacity
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
6628
6633
.
25.
Yuan
,
H.
,
Zhou
,
L.
, and
Xu
,
W.
,
2019
, “
A Comprehensive Static Model of Cable-Driven Multi-Section Continuum Robots Considering Friction Effect
,”
Mech. Mach. Theory
,
135
, pp.
130
149
.
26.
Bajo
,
A.
, and
Simaan
,
N.
,
2012
, “
Kinematics-Based Detection and Localization of Contacts Along Multisegment Continuum Robots
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
291
302
.
27.
Seraji
,
H.
,
1989
, “
Configuration Control of Redundant Manipulators: Theory and Implementation
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
472
490
.
28.
Chen
,
Y.
,
Li
,
Z.
,
Xu
,
W.
,
Wang
,
Y.
, and
Ren
,
H.
,
2015
, “
Minimum Sweeping Area Motion Planning for Flexible Serpentine Surgical Manipulator With Kinematic Constraints
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
6348
6353
.
29.
Song
,
S.
,
Li
,
Z.
,
Yu
,
H.
, and
Ren
,
H.
,
2015
, “
Shape Reconstruction for Wire-Driven Flexible Robots Based on Bézier Curve and Electromagnetic Positioning
,”
Mechatronics
,
29
, pp.
28
35
.
30.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
3
(
1
), pp.
43
53
.
31.
John
,
T.
,
Vincent
,
A.
, and
Caleb
,
R.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Robot. Res.
,
38
(
6
), pp.
723
746
.
32.
Goldman
,
R. E.
,
Bajo
,
A.
, and
Simaan
,
N.
,
2014
, “
Compliant Motion Control for Multi-segment Continuum Robots With Actuation Force Sensing
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
890
902
.
33.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
,
2001
, “
Randomized Kinodynamic Planning
,”
Int. J. Robot. Res.
,
20
(
5
), pp.
378
400
.
34.
Hsu
,
D.
,
Kindel
,
R.
,
Latombe
,
J.-C.
, and
Rock
,
S.
,
2002
, “
Randomized Kinodynamic Motion Planning With Moving Obstacles
,”
Int. J. Robot. Res.
,
21
(
3
), pp.
233
255
.
35.
Teo
,
C.
,
Tan
,
K.
, and
Lim
,
S.
,
2008
, “
Dynamic Geometric Compensation for Gantry Stage Using Iterative Learning Control
,”
IEEE Trans. Instrum. Meas.
,
57
(
2
), pp.
413
419
.
36.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
465
.
37.
Peng
,
J.
,
Xu
,
W.
,
Yang
,
T.
,
Hu
,
Z.
, and
Liang
,
B.
,
2020
, “
Dynamic Modeling and Trajectory Tracking Control Method of Segmented Linkage Cable-Driven Hyper-Redundant Robot
,”
Nonlinear Dyn.
,
101
, pp.
233
253
.
38.
Zheng
,
X.
,
Yang
,
T.
,
Zhu
,
X.
,
Chen
,
Z.
,
Wang
,
X.
, and
Liang
,
B.
,
2021
, “
Dynamic Modeling and Experimental Verification of a Cable-Driven Continuum Manipulator With Cable-Constrained Synchronous Rotating Mechanisms
,”
Nonlinear Dyn.
,
107
(
1
), pp.
153
172
.
39.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2018
, “
Frequency-Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control
,”
IEEE Trans. Control Syst. Technol.
,
26
(
2
), pp.
637
651
.
40.
Yuan
,
W.
,
Liu
,
Y.
,
Wang
,
H.
, and
Cao
,
Y.
,
2017
, “
A Geometric Structure-Based Particle Swarm Optimization Algorithm for Multi-Objective Problems
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
47
(
9
), pp.
2516
2537
.
41.
He
,
W.
,
Meng
,
T.
,
Zhang
,
S.
,
Liu
,
J.
,
Li
,
G.
, and
Sun
,
C.
,
2019
, “
Dual-Loop Adaptive Iterative Learning Control for a Timoshenko Beam With Output Constraint and Input Backlash
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
49
(
5
), pp.
1027
1038
.
42.
Jin
,
X.
,
2017
, “
Iterative Learning Control for Non-Repetitive Trajectory Tracking of Robot Manipulators With Joint Position Constraints and Actuator Faults
,”
Int. J. Adapt. Control Signal Process.
,
31
(
6
), pp.
859
875
.
You do not currently have access to this content.