Abstract

The tracking control of tendon-driven manipulators has recently become a hot topic. However, the flexible elastic tendon introduces greater residual vibration, making it more difficult to control the trajectory tracking of the manipulator. In this paper, a dynamics model of the elastic tendon-driven manipulator (ETDM) that considers motion coupling is established. A hierarchical sliding mode control (HSMC) method is proposed to realize the trajectory tracking control of the ETDM. On the basis of the Lyapunov design method, the actuator subsliding manifold is defined as the first sliding manifold. The first sliding manifold is then used to construct the joint side subsliding manifold. Furthermore, the total sliding manifold is established based on the joint side sliding manifold and the actuator's sliding manifold. The stability of the proposed HSMC is proved using the Lyapunov stability theory. Finally, simulations and experiments are performed on a two-degree-of-freedom ETDM tracking desired trajectories to demonstrate the effectiveness of the proposed HSMC method. The proposed HSMC exhibits higher tracking accuracy compared with proportional–integral–derivative, and adaptive second-order fast nonsingular terminal sliding mode (SOFNTSM) controls in the simulations. The introduction of different disturbances reveals that HSMC has better robustness than proportional–integral–derivative control. Experimental results show that the maximum error of trajectory tracking is less than 0.025 rad.

References

1.
Briot
,
S.
, and
Arakelian
,
V.
,
2010
, “
On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021004
.
2.
He
,
W.
,
Yan
,
Z.
,
Sun
,
Y.
,
Ou
,
Y.
, and
Sun
,
C.
,
2018
, “
Neural-Learning-Based Control for a Constrained Robotic Manipulator With Flexible Joints
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
12
), pp.
5993
6003
.
3.
Janabi-Sharifi
,
F.
,
Jalali
,
A.
, and
Walker
,
I. D.
,
2021
, “
Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial
,”
IEEE Access
,
9
, pp.
68703
68719
.
4.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
.
5.
Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Robot. Autom. Mag.
,
16
(
3
), pp.
81
94
.
6.
Vermeulen
,
M.
, and
Wisse
,
M.
,
2010
, “
Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation
,”
Int. J. Soc. Robot.
,
2
(
3
), pp.
275
288
.
7.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin/ Heidelberg
, Chap.
9
.
8.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
9.
Lens
,
T.
,
2012
, “
Physical Human–Robot Interaction With a Lightweight, Elastic Tendon Driven Robotic Arm
,”
Ph.D. thesis
,
Technische Universität
,
Darmstadt
.
10.
Lens
,
T.
, and
Stryk
,
O. v.
,
2012
, “
Investigation of Safety in Human–Robot-Interaction for a Series Elastic, Tendon-Driven Robot Arm
,”
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
4309
4314
.
11.
Townsend
,
W.
,
1988
, “
The Effect of Transmission Design on Force-Controlled Manipulator Performance
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
12.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.
13.
Shi
,
Y.
,
Zhang
,
W.
,
Yang
,
T.
,
Wang
,
Y.
,
Liu
,
L.
, and
Cui
,
Y.
,
2020
, “
Flexible Joints of Picking Manipulator Based on Current Feedback
,”
IEEE Access
,
8
, pp.
85329
85338
.
14.
Xu
,
F.
,
Liu
,
G.
,
Zou
,
X.
,
Chen
,
Z.
, and
Xu
,
C.
,
2011
, “
Dynamic Simulation of Litchi Fruit Flexible Manipulator in Picking Process
,”
Proceedings of the 2011 Second International Conference on Digital Manufacturing & Automation
,
Zhangjiajie, China
,
Aug. 5–7
, pp.
475
479
.
15.
Spong
,
M. W.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
4
), pp.
310
318
.
16.
Lee
,
J. K.
,
Choi
,
C. H.
,
Yoon
,
K. H.
,
Lee
,
H. J.
,
Park
,
B. S.
, and
Yoon
,
J. S.
,
2008
, “
Design and Evaluation of Cable-Driven Manipulator With Motion-Decoupled Joints
,”
Proceedings of the 2008 International Conference on Smart Manufacturing Application
,
Goyangi, South Korea
,
Apr. 9–11
, pp.
575
580
.
17.
Jong Kwang
,
L.
,
Choi
,
C. H.
,
Yoon
,
K. H.
,
Park
,
B. S.
, and
Yoon
,
J. S.
,
2008
, “
Design of a Servomanipulator With Tendon Transmission
,”
Proceedings of the 2008 International Conference on Control, Automation and Systems
,
Seoul, South Korea
,
Oct. 14–17
, pp.
1653
1656
.
18.
Zhao
,
B.
, and
Nelson
,
C. A.
,
2013
, “
Decoupled Cable-Driven Grasper Design Based on Planetary Gear Theory
,”
ASME J. Med. Devices
,
7
(
2
), p.
020918
.
19.
Jiang
,
S.
,
Hua
,
D.
,
Wang
,
Y.
,
Ju
,
F.
,
Yin
,
L.
, and
Chen
,
B.
,
2018
, “
Design and Modeling of Motion-Decoupling Mechanism for Cable-Driven Joints
,”
Adv. Mech. Eng.
,
10
(
5
), pp.
1
10
.
20.
Li
,
X. J.
, and
Yang
,
G. H.
,
2016
, “
FLS-Based Adaptive Synchronization Control of Complex Dynamical Networks With Nonlinear Couplings and State-Dependent Uncertainties
,”
IEEE Trans. Cybern.
,
46
(
1
), pp.
171
180
.
21.
Li
,
Z.
,
Huang
,
Z.
,
He
,
W.
, and
Su
,
C. Y.
,
2017
, “
Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1664
1674
.
22.
Sun
,
C.
,
Gao
,
H.
,
He
,
W.
, and
Yu
,
Y.
,
2018
, “
Fuzzy Neural Network Control of a Flexible Robotic Manipulator Using Assumed Mode Method
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
11
), pp.
5214
5227
.
23.
He
,
W.
,
Ge
,
S. S.
,
Li
,
Y.
,
Chew
,
E.
, and
Ng
,
Y. S.
,
2015
, “
Neural Network Control of a Rehabilitation Robot by State and Output Feedback
,”
J. Intell. Robot Syst.
,
80
(
1
), pp.
15
31
.
24.
Ozgoli
,
S.
, and
Taghirad
,
H. D.
,
2009
, “
Fuzzy Error Governor: A Practical Approach to Counter Actuator Saturation on Flexible Joint Robots
,”
Mechatronics
,
19
(
6
), pp.
993
1002
.
25.
Li
,
Y.
,
Tong
,
S.
, and
Li
,
T.
,
2013
, “
Adaptive Fuzzy Output Feedback Control for a Single-Link Flexible Robot Manipulator Driven DC Motor Via Backstepping
,”
Nonlinear Anal.: Real World Appl.
,
14
(
1
), pp.
483
494
.
26.
Subudhi
,
B.
, and
Morris
,
A. S.
,
2002
, “
Dynamic Modelling, Simulation and Control of a Manipulator With Flexible Links and Joints
,”
Robot Auton. Syst.
,
41
(
4
), pp.
257
270
.
27.
Wang
,
J.-J.
,
2011
, “
Simulation Studies of Inverted Pendulum Based on PID Controllers
,”
Simul. Modell. Pract. Theory
,
19
(
1
), pp.
440
449
.
28.
Yi
,
S.
, and
Zhai
,
J.
,
2019
, “
Adaptive Second-Order Fast Nonsingular Terminal Sliding Mode Control for Robotic Manipulators
,”
ISA Trans.
,
90
, pp.
41
51
.
29.
Deng
,
W.
,
Yao
,
J.
, and
Ma
,
D.
,
2017
, “
Robust Adaptive Precision Motion Control of Hydraulic Actuators With Valve Dead-Zone Compensation
,”
ISA Trans.
,
70
, pp.
269
278
.
30.
Wang
,
Y.
,
Zhu
,
K.
,
Chen
,
B.
, and
Jin
,
M.
,
2020
, “
Model-Free Continuous Nonsingular Fast Terminal Sliding Mode Control for Cable-Driven Manipulators
,”
ISA Trans.
,
98
, pp.
483
495
.
31.
Rubagotti
,
M.
,
Estrada
,
A.
,
Castanos
,
F.
,
Ferrara
,
A.
, and
Fridman
,
L.
,
2011
, “
Integral Sliding Mode Control for Nonlinear Systems With Matched and Unmatched Perturbations
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2699
2704
.
32.
Riachy
,
S.
,
Orlov
,
Y.
,
Floquet
,
T.
,
Santiesteban
,
R.
, and
Richard
,
J.-P.
,
2008
, “
Second-Order Sliding Mode Control of Underactuated Mechanical Systems I: Local Stabilization With Application to an Inverted Pendulum
,”
J. Robust Nonlinear Control
,
18
(
4–5
), pp.
529
543
.
33.
Orlov
,
Y. V.
, and
Utkin
,
V. I.
,
1987
, “
Sliding Mode Control in Indefinite-Dimensional Systems
,”
Automatica
,
23
(
6
), pp.
753
757
.
34.
Zhang
,
S.
,
Wang
,
W.
,
Xu
,
Z.
,
Shang
,
D.
, and
Yin
,
M.
,
2022
, “
Adaptive Sliding Mode Robust Control of Manipulator Driven by Tendon-Sheath Based on HJI Theory
,”
Meas. Control
,
55
(
7–8
), pp.
684
702
.
35.
Wang
,
Y.
,
Chen
,
J.
,
Zhu
,
K.
,
Chen
,
B.
, and
Wu
,
H.
,
2018
, “
Time-Delay Control of Cable-Driven Robots With Adaptive Fractional-Order Nonsingular Terminal Sliding Mode
,”
IEEE Access
,
6
, pp.
54086
54096
.
36.
Wang
,
Y.
,
Chen
,
J.
,
Yan
,
F.
,
Zhu
,
K.
, and
Chen
,
B.
,
2019
, “
Adaptive Super-Twisting Fractional-Order Nonsingular Terminal Sliding Mode Control of Cable-Driven Manipulators
,”
ISA Trans.
,
86
, pp.
163
180
.
37.
Kirchhoff
,
J.
, and
Stryk
,
O. v.
,
2016
, “
Robust Trajectory Tracking Control for an Ultra Lightweight Tendon Driven Series Elastic Robot Arm
,”
Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, AB, Canada
,
July 12–15
, pp.
1297
1304
.
38.
Zhang
,
Y.
,
Wu
,
C.
, and
He
,
L.
,
2021
, “
The Effect of Preload Force on Damping in Tendon-Driven Manipulator
,”
Ind. Robot.
,
48
(
3
), pp.
454
462
.
39.
Rsetam
,
K.
,
Cao
,
Z.
,
Man
,
Z.
, and
IEEE
,
2016
, “
Hierarchical Sliding Mode Control Applied to a Single-Link Flexible Joint Robot Manipulator
,”
2016 International Conference on Advanced Mechatronic Systems
,
Melbourne, VIC, Australia
,
Jan. 16
, pp.
476
481
.
40.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Pearson
,
London
, Chap.
4
.
41.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D. B.
,
Schutter
,
J. d.
, and
Brussel
,
H. V.
,
1997
, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
730
740
.
You do not currently have access to this content.