Abstract

The development of flexible multidigital grippers with both adaptive grasping and in-hand manipulation capabilities remains a complex issue for human-like dexterous manipulation. After four decades of research in dexterous manipulation, many robotic hands have been developed. The evaluation of these hands remains a key challenge. The design of the hand (degree of actuation, number of fingers, and joints) does not guarantee the real behavior of the hand and its performance. For comparison and evaluation purposes, the literature often refers to a potential dexterity, but very rarely provides an evaluation of the real dexterity of these grippers. The RoBioSS hand offers a high level of dexterity with inside-hand manipulation capabilities. In order to characterize the performance of the hand with regard to the state of the art, this article proposes an approach based on the dexterity analysis. It is based on the use of a known reference object and on defined grasps and movements of the object. The results presented allow us to evaluate grasps capabilities and quality of the object's movement inside the hand.

References

1.
Salisbury
,
J. K.
,
1985
, “
Integrated Language, Sensing and Control for a Robot Hand
,”
Third International Symposium in Robotics Research
,
Gouvieux-Chantilly, France
, pp.
54
61
.
2.
Liu
,
H.
,
Butterfass
,
J.
,
Grebenstein
,
M.
, and
Hirzinger
,
G.
,
2001
, “
DLR Multisensory Articulated Hand I and II
,”
International Workshop on Bio-Robotics and Teleoperation
,
Beijing, China
,
May 27–30
.
3.
ShadowRobotCompany
,
2003
, “
Design of a Dextrous Hand for Advanced CLAWAR Applications
,”
International Conference on Climbing and Walking Robots
,
Catania, Italy
,
Sept. 17–19
. https://www.shadowrobot.com/
4.
Furukawa
,
N.
,
Namiki
,
A.
,
Taku
,
S.
, and
Ishikawa
,
M.
,
2006
, “
Dynamic Regrasping Using a High-Speed Multifingered Hand and a High-Speed Vision System
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
181
187
.
5.
Ueda
,
J.
,
Kondo
,
M.
, and
Ogasawara
,
T.
,
2010
, “
The Multifingered NAIST Hand System for Robot In-Hand Manipulation
,”
Mech. Mach. Theory
,
45
(
2
), pp.
224
238
.
6.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Rob.
,
8
(
3
), pp.
459
479
.
7.
Palli
,
G.
,
Ficuciello
,
F.
,
Scarcia
,
U.
,
Melchiorri
,
C.
, and
Siciliano
,
B.
,
2014
, “
Experimental Evaluation of Synergy-Based In-Hand Manipulation
,”
19th World Congress of the International Federation of Automatic Control
,
Le Cap, South Africa
,
Aug. 24–29
, Vol.
47
, No
3
, pp.
299
304
.
8.
Martin
,
J.
, and
Grossard
,
M.
,
2014
, “
Design of a Fully Modular and Backdrivable Dexterous Hand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
783
798
.
9.
Garate
,
V. R.
,
Pozzi
,
M.
,
Prattichizzo
,
D.
, and
Ajoudani
,
A.
,
2018
, “
A Bio-Inspired Grasp Stiffness Control for Robotic Hands
,”
Front. Rob. AI
,
5
(
89
).
10.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
11.
Javier Andrés
,
F.
,
Pérez-González
,
A.
,
Rubert
,
C.
,
Fuentes
,
J.
, and
Sospedra
,
B.
,
2019
, “
Comparison of Grasping Performance of Tendon and Linkage Transmission Systems in an Electric-Powered Low-Cost Hand Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011018
.
12.
Yang
,
H.
,
Wei
,
G.
,
Ren
,
L.
,
Qian
,
Z.
,
Wang
,
K.
,
Xiu
,
H.
, and
Liang
,
W.
,
2021
, “
An Affordable Linkage-and-Tendon Hybrid-Driven Anthropomorphic Robotic Hand—MCR-Hand II
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
024502
.
13.
Govindan
,
N.
, and
Thondiyath
,
A.
,
2019
, “
Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051012
.
14.
Bullock
,
I. M.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
, “
A Hand-Centric Classification of Human and Robot Dexterous Manipulation
,”
IEEE Trans. Haptics
,
6
(
2
), pp.
129
144
.
15.
Bicchi
,
A.
,
2000
, “
Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
652
662
.
16.
Li
,
Z.
,
Canny
,
J. F.
, and
Sastry
,
S. S.
, “
On Motion Planning for Dexterous Manipulation. I. The Problem Formulation
,”
1989 International Conference on Robotics and Automation
, No. 3, pp.
775
780
.
17.
Okamura
,
A.
,
Smaby
,
N.
, and
Cutkosky
,
M. R.
,
2000
, “
An Overview of Dexterous Manipulation
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, pp.
255
261
.
18.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
19.
Sturges
,
R. H.
,
1990
, “
A Quantification of Machine Dexterity Applied to an Assembly Task
,”
Int. J. Rob. Res.
,
9
(
3
), pp.
49
62
.
20.
Bernstein
,
N. A.
,
1996
,
Dexterity and Its Development
,
M. L.
Latash
and
M. T.
Turvey
, eds.,
Psychology Press
,
New York
.
21.
Shimoga
,
K. B.
,
1996
, “
Robot Grasp Synthesis Algorithms: A Survey
,”
Int. J. Rob. Res.
,
15
(
3
), pp.
230
266
.
22.
Ackerman
,
E.
,
2018
, “
OpenAI Demonstrates Complex Manipulation Transfer From Simulation to Real World
,”
IEEE Spectrum Magazine
, July 30.
23.
Nguyen
,
K.-C.
, and
Perdereau
,
V.
,
2012
, “
Fingertip Force Control for Grasping and In-Hand Manipulation
,”
HANDLE Training Workshop for Young Researchers and Ph.D. Students
,
Benicassim, Spain
.
24.
Kumar
,
V.
,
Xu
,
Z.
, and
Todorov
,
E.
,
2013
, “
Fast, Strong and Compliant Pneumatic Actuation for Dexterous Tendon-Driven Hands
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
.
25.
Lovchik
,
C.
, and
Diftler
,
M.
,
1999
, “
The Robonaut Hand: a Dexterous Robot Hand for Space
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
.
26.
Grossard
,
M.
,
Martin
,
J.
, and
da Cruz Pacheco
,
G. F.
,
2015
, “
Control-Oriented Design and Robust Decentralized Control of the CEA Dexterous Robot Hand
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1809
1821
.
27.
Namiki
,
A.
,
Imai
,
Y.
,
Ishikawa
,
M.
, and
Kaneko
,
M.
,
2003
, “
Development of a High-Speed Multifingered Hand System and Its Application to Catching
,”
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Oct. 30
,
Las Vegas, NV
, pp.
2666
2671
.
28.
Schlesinger
,
G.
,
1919
,
Der mechanische Aufbau der kunstlichen Glieder, in Ersatzglieder und Arbeitshilfen
,
Springer
,
Berlin/Heidelberg
, pp.
321
661
.
29.
Napier
,
J. R.
,
1956
, “
The Prehensile Movements of the Human Hand
,”
J. Bone Jt. Surg.
,
38-B
(
4
), pp.
902
913
.
30.
Cutkosky
,
M. R.
, and
Howe
,
R. D.
,
1990
,
Human Grasp Choice and Robotic Grasp Analysis, Dextrous Robot Hands
,
Springer, New York
, pp.
5
31
.
31.
Zheng
,
J. Z.
,
De La Rosa
,
S.
, and
Dollar
,
A. M.
,
2011
, “
An Investigation of Grasp Type and Frequency in Daily Household and Machine Shop Tasks
,”
International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
.
32.
Feix
,
T.
,
Romero
,
J.
,
Ek
,
C. H.
,
Schmiedmayer
,
H.
, and
Kragic
,
D.
,
2013
, “
A Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
82
93
.
33.
Grebenstein
,
M.
,
2012
, “
Approaching Human Performance: The Functionality Driven Awiwi Robot Hand
,” Diss. ETH No 20471, Doctorat en sciences, ETH Zurich.
34.
Odhner
,
L. U.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2012
, “
Precision Grasping and Manipulation of Small Objects From Flat Surfaces Using Underactuated Fingers
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
.
35.
Siciliano
,
B.
, and
Khatib
,
O.
,
2018
, “Chapter 15: Robot Hands,”
Springer Handbook of Robotics
,
Springer
,
Berlin/Heidelberg
.
36.
Mnyusiwalla
,
H.
,
Vulliez
,
P.
,
Gazeau
,
J.-P.
, and
Zeghloul
,
S.
,
2015
, “
A New Dexterous Hand Based on Bio-Inspired Finger Design for Inside-Hand Manipulation
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
46
(
6
), pp.
809
817
.
37.
Vulliez
,
P.
,
Gazeau
,
J. P.
,
Laguillaumie
,
P.
,
Mnyusiwalla
,
H.
, and
Seguin
,
P.
,
2018
, “
Focus on the Mechatronics Design of a New Dexterous Robotic Hand for Inside Hand Manipulation
,”
Robotica
,
36
(
8
), pp.
1206
1224
.
38.
Grebenstein
,
M.
,
2014
,
Approaching Human Performance, The Functionality-Driven Awiwi Robot Hand
,
Springer
,
Cham
.
39.
Han
,
L.
, and
Trinkle
,
J. C.
,
1998
, “
Dextrous Manipulation by Rolling and Finger Gaiting
,”
Proceedings—IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
730
735
.
40.
Daoud
,
N.
,
Gazeau
,
J. P.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2012
, “
A Real-Time Strategy for Dexterous Manipulation: Fingertips Motion Planning, Force Sensing and Grasp Stability
,”
Rob. Auton. Syst.
,
60
(
3
), pp.
377
386
.
41.
Daoud
,
N.
,
Gazeau
,
J. P.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2011
, “
A Fast Grasp Synthesis Method for Online Manipulation
,”
Rob. Auton. Syst.
,
59
(
6
), pp.
421
427
.
42.
Mnyussiwalla
,
H.
,
Seguin
,
P.
,
Vulliez
,
P.
, and
Gazeau
,
J. P.
,
2022
, “
Evaluation and Selection of Grasp Quality Criteria for Dexterous Manipulation
,”
J. Intell. Rob. Syst.
,
104
(
2
), pp.
1
31
.
43.
Monnet
,
T.
,
Desailly
,
E.
,
Begon
,
M.
,
Vallée
,
C.
, and
Lacouture
,
P.
,
2007
, “
Comparison of the SCoRE and HA Methods for Locating in Vivo the Glenohumeral Joint Centre
,”
J. Biomech.
,
40
(
15
), pp.
3487
3492
.
44.
Falco
,
J. A.
,
Marvel
,
J. A.
, and
Messina
,
E. R.
,
2014
,
A Roadmap to Advance Measurement Science in Robot Dexterity and Manipulation
,
National Institute of Standards and Technology, U.S. Department of Commerce
,
Gaithersburg, MD
.
You do not currently have access to this content.