Abstract

A redundant serial manipulator inverse position kinematic mapping is employed to define a new manipulator operational space differentiable manifold and an associated system of well posed operational space differential equations of manipulator dynamics. A review of deficiencies in the conventional generalized inverse velocity approach to manipulator redundancy resolution and a numerical example show that the conventional approach is incompatible with kinematics of redundant serial manipulators. The inverse position kinematic mapping presented is shown to define a differentiable manifold that is parameterized by either input or operational space coordinates. Differentiation of the inverse position mapping yields an inverse velocity mapping that is a total differential, in contrast with generalized inverse velocity mappings, hence avoiding the deficiencies identified. A second differentiation yields an inverse acceleration mapping that is used, without ad-hoc derivation, to obtain well posed operational space ordinary differential equations of redundant manipulator dynamics that are equivalent to the equations of multibody dynamics.

References

1.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
2.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Maciejewski
,
A. A.
,
2016
, “Redundant Robots,”
Springer Handbook of Robotics
, 2nd ed.,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer-Verlag
,
Berlin
.
3.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Mach. Syst.
,
10
(
2
), pp.
47
53
.
4.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
RA-3
(
1
), pp.
43
53
.
5.
Khatib
,
O.
,
1993
, “
The Operational Space Framework
,”
JSME Int. J. Ser. C
,
36
(
3
), pp.
277
287
.
6.
Albu-Schäffer
,
A.
, and
Sachtler
,
A.
,
2023
, “
Redundancy Resolution at Position Level
,”
IEEE Trans. Rob.
, Early Access.
7.
Haug
,
E. J.
, and
Peidro
,
A.
,
2022
, “
Redundant Manipulator Kinematics and Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
11
), p.
111008
.
8.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
,
Ox Bow Press (1979)
,
Woodbridge, Conn
.
9.
Robbin
,
J. W.
, and
Salamon
,
D. A.
,
2022
,
Introduction to Differential Geometry
,
Springer
,
Berlin
.
10.
Haack
,
W.
, and
Wendland
,
W.
,
1972
,
Lectures on Partial and Pfaffian Differential Equations
,
Pergamon Press
,
Oxford
.
11.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
12.
Klein
,
C. A.
, and
Huang
,
C.-H.
,
1983
, “
Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-13
(
3
), pp.
245
250
.
13.
De Luca
,
A.
, and
Oriolo
,
G.
,
1997
, “
Nonholonomic Behavior in Redundant Robots Under Kinematic Control
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
776
782
.
14.
Zanchettin
,
A. M.
,
Rocco
,
P.
, and
Ferretti
,
G.
,
2010
, “
Numerical Issues in Integrating Holonomic Kinematic Inversion Algorithms for Redundant Manipulators
,”
8th IFAC Symposium on Nonlinear Control Systems
,
Bologna, Italy
,
Sept. 1–3
, pp.
999
1004
.
15.
Shamir
,
T.
, and
Yomdin
,
Y.
,
1988
, “
Repeatability of Redundant Manipulators: Mathematical Solution of the Problem
,”
IEEE Trans. Automat. Control
,
33
(
11
), pp.
1004
1009
.
16.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2010
, “
A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020913
.
17.
Rocco
,
P.
, and
Zanchettin
,
A. M.
,
2010
, “
General Parametrization of Holonomic Inversion Algorithms for Redundant Manipulators
,”
IEEE Int. Conf. on Robotics and Automation
,
Anchorage, AK
,
May 3–8, 2010
, pp.
3721
3726
.
18.
Haug
,
E. J.
,
2024
, “
A Cyclic Differentiable Manifold Representation of Redundant Manipulator Kinematics
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061005
.
19.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
20.
Haug
,
E. J.
,
2022
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume II: Modern Methods
, 3rd ed.,
ResearchGate
,
Berlin
.
21.
Peidro
,
A.
, and
Haug
,
E. J.
,
2023
, “
Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators
,”
Machines
.
22.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.