Abstract

Modeling the nonlinear dynamics of prosthetic feet is an important tool for linking prosthesis mechanical properties to end-user outcomes. There has been a renewed interest in data-driven modeling of dynamical systems, with the development of the Extended Dynamic Mode Decomposition with control (eDMDc) and the Sparse Identification of Nonlinear Dynamics with Control (SINDYc). These algorithms do not require prior information about the system, including mechanical configuration, and are data-driven. The aim of this study was to assess the feasibility and accuracy of applying these data-driven algorithms to model prosthesis nonlinear load response dynamics. Different combinations of a dynamic response foot, a hydraulic ankle unit, and three shock-absorbing pylons of varying resistance were tested loaded and unloaded at three orientations reflecting critical positions during the stance phase of walking. We tested two different data-driven algorithms, the eDMDc, with two different kernels, and the SINDYc, which regresses the coefficients for a nonlinear ordinary differential equation. Each algorithm was able to model the nonlinear prosthesis dynamics, but the SINDYc outperformed the eDMDc methods with a root mean square error across orientations < 1.50 mm and a maximum error in peak displacement of 1.28 mm or 4% relative error. From the estimated SINDYc governing equation of the system dynamics, we were able to simulate different mechanical behavior by systematically varying parameter values, which offers a novel foundation for designing, controlling, and classifying prosthetic systems ultimately aimed at improving prosthesis user outcomes.

References

1.
Major
,
M. J.
, and
Fey
,
N. P.
,
2017
, “
Considering Passive Mechanical Properties and Patient User Motor Performance in Lower Limb Prosthesis Design Optimization to Enhance Rehabilitation Outcomes
,”
Phys. Ther. Rev.
,
22
(
3–4
), pp.
202
216
.
2.
Maun
,
J. A.
,
Gard
,
S. A.
,
Major
,
M. J.
, and
Takahashi
,
K. Z.
,
2021
, “
Reducing Stiffness of Shock-Absorbing Pylon Amplifies Prosthesis Energy Loss and Redistributes Joint Mechanical Work During Walking
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
15
.
3.
Prost
,
V.
,
Johnson
,
W. B.
,
Kent
,
J. A.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2023
, “
Systematic Assessment of Prosthesis Stiffness on User Biomechanics Using the Lower Leg Trajectory Error Framework and Its Implication for the Design and Evaluation of Ankle-Foot Prostheses
,”
ASME J. Biomech. Eng.
,
145
(
4
), p.
041002
.
4.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2013
, “
The Effects of Prosthetic Ankle Stiffness on Ankle and Knee Kinematics, Prosthetic Limb Loading, and Net Metabolic Cost of Trans-Tibial Amputee Gait.
,”
Clin. Biomech.
,
29
(
1
), pp.
98
104
.
5.
Adamczyk
,
P. G.
,
Roland
,
M.
, and
Hahn
,
M. E.
,
2017
, “
Sensitivity of Biomechanical Outcomes to Independent Variations of Hindfoot and Forefoot Stiffness in Foot Prostheses
,”
Hum. Mov. Sci.
,
54
(
1
), pp.
154
171
.
6.
Prost
,
V.
,
Peterson
,
H. V.
, and
Winter V
,
A. G.
,
2023
, “
Multi-Keel Passive Prosthetic Foot Design Optimization Using the Lower Leg Trajectory Error Framework
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041001
.
7.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
V. A. G.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Springs for Evaluating Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021010
.
8.
Van Der Linde
,
H.
,
Hofstad
,
C. J.
,
Geurts
,
A. C. H.
,
Postema
,
K.
,
Geertzen
,
J. H. B.
, and
Van Limbeck
,
J.
,
2004
, “
A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower-Limb Prosthesis
,”
J. Rehabil. Res. Dev.
,
41
(
4
), pp.
555
570
.
9.
Hofstad
,
C. J.
,
van der Linde
,
H.
,
van Limbeek
,
J.
, and
Postema
,
K.
,
2004
, “
Prescription of Prosthetic Ankle-Foot Mechanisms After Lower Limb Amputation
,”
Cochrane Database Syst. Rev.
,
2010
(
1
), pp.
1
39
.
10.
Stark
,
G.
,
2005
, “
Perspectives on How and Why Feet Are Prescribed
,”
J. Prosthet. Orthot.
,
17
(
4 SUPPL.
), pp.
18
22
.
11.
Major
,
M. J.
,
Scham
,
J.
, and
Orendurff
,
M.
,
2018
, “
The Effects of Common Footwear on Stance-Phase Mechanical Properties of the Prosthetic Foot-Shoe System
,”
Prosthet. Orthot. Int.
,
42
(
2
), pp.
198
207
.
12.
Major
,
M. J.
,
Quinlan
,
J.
,
Hansen
,
A. H.
, and
Esposito
,
E. R.
,
2022
, “
Effects of Women’s Footwear on the Mechanical Function of Heel-Height Accommodating Prosthetic Feet
,”
PLoS One
,
17
(
1
), pp.
1
14
.
13.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2011
, “
Amputee Independent Prosthesis Properties-A New Model for Description and Measurement
,”
J. Biomech.
,
44
(
14
), pp.
2572
2575
.
14.
Major
,
M. J.
,
Johnson
,
W. B.
, and
Gard
,
S. A.
,
2015
, “
Interrater Reliability of Mechanical Tests for Functional Classification of Transtibial Prosthesis Components Distal to the Socket
,”
J. Rehabil. Res. Dev.
,
52
(
4
), pp.
467
476
.
15.
Van Jaarsveld
,
H. W. L.
,
Grootenboer
,
H. J.
,
Koopman
,
H. F. J. M.
, and
de Vries
,
J.
,
1990
, “
Stiffness and Hysteresis Properties of Some Prosthetic Feet
,”
Prosthet. Orthot. Int.
,
14
(
3
), pp.
117
124
.
16.
Webber
,
C. M.
, and
Kaufman
,
K.
,
2017
, “
Instantaneous Stiffness and Hysteresis of Dynamic Elastic Response Prosthetic Feet
,”
Prosthet. Orthot. Int.
,
41
(
5
), pp.
463
468
.
17.
Gard
,
S. A.
, and
Konz
,
R. J.
,
2003
, “
The Effect of a Shock-Absorbing Pylon on the Gait of Persons with Unilateral Transtibial Amputation
,”
J. Rehabil. Res. Dev.
,
40
(
2
), p.
111
.
18.
Boutwell
,
E.
,
Stine
,
R.
, and
Gard
,
S.
,
2017
, “
Shock Absorption During Transtibial Amputee Gait: Does Longitudinal Prosthetic Stiffness Play a Role?
,”
Prosthet. Orthot. Int.
,
41
(
2
), pp.
178
185
.
19.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2012
, “
Optimization of Prosthetic Foot Stiffness to Reduce Metabolic Cost and Intact Knee Loading During Below-Knee Amputee Walking: A Theoretical Study
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
111005
.
20.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle-Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. B: Biol. Sci.
,
279
(
1728
), pp.
457
464
.
21.
Montgomery
,
J. R.
, and
Grabowski
,
A. M.
,
2018
, “
The Contributions of Ankle, Knee and hip Joint Work to Individual leg Work Change During Uphill and Downhill Walking Over a Range of Speeds
,”
R. Soc. Open Sci.
,
5
(
8
), p.
180550
.
22.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2020
, “
Comparing Preference of Ankle–Foot Stiffness in Below-Knee Amputees and Prosthetists
,”
Sci. Rep.
,
10
(
1
), p.
16067
.
23.
Major
,
M. J.
,
Kenney
,
L. P. J.
,
Twiste
,
M.
, and
Howard
,
D.
,
2012
, “
Stance Phase Mechanical Characterization of Transtibial Prostheses Distal to the Socket: A Review
,”
J. Rehabil. Res. Dev.
,
49
(
6
), pp.
815
830
.
24.
Klute
,
G. K.
,
Berge
,
J. S.
, and
Segal
,
A. D.
,
2004
, “
Heel-Region Properties of Prosthetic Feet and Shoes
,”
J. Rehabil. Res. Dev.
,
41
(
4
), pp.
535
545
.
25.
Geil
,
M. D.
,
2002
, “
An Iterative Method for Viscoelastic Modeling of Prosthetic Feet
,”
J. Biomech.
,
35
(
10
), pp.
1405
1410
.
26.
Curtze
,
C.
,
Hof
,
A. L.
,
van Keeken
,
H. G.
,
Halbertsma
,
J. P. K.
,
Postema
,
K.
, and
Otten
,
B.
,
2009
, “
Comparative Roll-Over Analysis of Prosthetic Feet
,”
J. Biomech.
,
42
(
11
), pp.
1746
1753
.
27.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2000
, “
Prosthetic Foot Roll-Over Shapes With Implications for Alignment of Trans-Tibial Prostheses
,”
Prosthet. Orthot. Int.
,
24
(
3
), pp.
205
215
.
28.
Miller
,
L. A.
, and
Childress
,
D. S.
,
1997
, “
Analysis of a Vertical Compliance Prosthetic Foot
,”
J. Rehabil. Res. Dev.
,
34
(
1
), pp.
52
57
.
29.
Mcgeehan
,
M. A.
,
Hall
,
E.
,
Adamczyk
,
P. G.
,
Nichols
,
K. M.
,
Hahn
,
M. E.
, and
Hall
,
E.
,
2021
, “
A Reduced-Order Computational Model of a Semi-Active Variable-Stiffness Foot Prosthesis
,”
ASME J. Biomech. Eng.
,
143
(
7
), p.
074503
.
30.
Arbabi
,
H.
, and
Mezić
,
I.
,
2017
, “
Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator
,”
SIAM J. Appl. Dyn. Syst.
,
16
(
4
), pp.
2096
2126
.
31.
Juang
,
J. N.
, and
Suzuki
,
H.
,
1986
, “
An Eigensystem Realization Algorithm in Frequency Domain for Modal Parameter Identification
,”
Astrodynamics Conference, 1986
,
8
(
5
), pp.
620
627
.
32.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
1
30
.
33.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Sparse Identification of Nonlinear Dynamics With Control (SINDYc)**SLB Acknowledges Support From the U.S. Air Force Center of Excellence on Nature Inspired Flight Technologies and Ideas (FA9550-14-1-0398). JLP Thanks Bill and Melinda Gates for Their Active
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
710
715
.
34.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
35.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2016
, “
Dynamic Mode Decomposition With Control
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
1
), pp.
142
161
.
36.
Avila
,
A. M.
, and
Mezić
,
I.
,
2020
, “
Data-Driven Analysis and Forecasting of Highway Traffic Dynamics
,”
Nat. Commun.
,
11
(
1
), p.
2090
.
37.
Dylewsky
,
D.
,
Kaiser
,
E.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2022
, “
Principal Component Trajectories for Modeling Spectrally Continuous Dynamics as Forced Linear Systems
,”
Phys. Rev. E
,
105
(
1
), p.
15312
.
38.
Ng
,
J.
, and
Asada
,
H.
,
2022
, “
Model Predictive Control and Transfer Learning of Hybrid Systems Using Lifting Linearization Applied to Cable Suspension Systems
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
682
689
.
39.
Brunton
,
S. L.
,
Proctor
,
J. L.
,
Kutz
,
J. N.
, and
Bialek
,
W.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.
40.
Korda
,
M.
, and
Mezić
,
I.
,
2018
, “
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
,”
J. Nonlinear Sci.
,
28
(
2
), pp.
687
710
.
41.
Schmid
,
P. J.
,
2021
, “
Dynamic Mode Decomposition and Its Variants
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
225
254
.
42.
Takens
,
F.
,
1981
,
Dynamical Systems and Turbulence
, 1st ed.,
Springer
,
Berlin Heidelberg
, pp.
366
381
.
43.
Shepherd
,
M. K.
,
Azocar
,
A. F.
,
Major
,
M. J.
, and
Rouse
,
E. J.
,
2018
, “
Amputee Perception of Prosthetic Ankle Stiffness During Locomotion
,”
J. NeuroEng. Rehabil.
,
15
(
1
), p.
99
.
44.
Igarashi
,
Y.
,
Yamakita
,
M.
,
Ng
,
J.
, and
Asada
,
H. H.
,
2020
, “
MPC Performances for Nonlinear Systems Using Several Linearization Models
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
, pp.
2426
2431
.
45.
Kamb
,
M.
,
Kaiser
,
E.
,
Brunton
,
S. L.
, and
Nathan Kutz
,
J.
,
2020
, “
Time-Delay Observables for Koopman: Theory and Applications
,”
SIAM J. Appl. Dyn. Syst.
,
19
(
2
), pp.
886
917
.
46.
Selby
,
N. S.
, and
Asada
,
H. H.
,
2021
, “
Learning of Causal Observable Functions for Koopman-DFL Lifting Linearization of Nonlinear Controlled Systems and Its Application to Excavation Automation
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6297
6304
.
47.
Abraham
,
I.
, and
Murphey
,
T. D.
,
2019
, “
Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
,”
IEEE Trans. Rob.
,
35
(
5
), pp.
1071
1083
.
48.
Turner
,
A. T.
,
Halsne
,
E. G.
,
Caputo
,
J. M.
,
Curran
,
C. S.
,
Hansen
,
A. H.
,
Hafner
,
B. J.
, and
Morgenroth
,
D. C.
,
2022
, “
Prosthetic Forefoot and Heel Stiffness Across Consecutive Foot Stiffness Categories and Sizes
,”
PLoS One
,
17
(
5
), pp.
1
15
.
49.
Zhao
,
S. R.
,
Haberman
,
A.
,
Li
,
Q.
, and
Bryant
,
J. T.
,
2017
, “
Method for Predicting Deformation Characteristics of Prosthetic Feet
,”
J. Prosthet. Orthot.
,
29
(
1
), pp.
7
18
.
50.
Murthy Arelekatti
,
V. N.
, and
Winter
,
V. A. G.
,
2018
, “
Design and Preliminary Field Validation of a Fully Passive Prosthetic Knee Mechanism for Users With Transfemoral Amputation in India
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031007
.
51.
American Orthotics & Prosthetics Association
, and
Foot Project Report
,
2010
, https://www.aopanet.org/wp-content/uploads/2013/12/Prosthetic_Foot_Project.pdf.
You do not currently have access to this content.