Abstract
In this paper, the grasping operation of CubeSat microsatellites is analyzed with a topological study of grasping strategies as functions of CubeSat geometry. Grasping conditions and limitations are introduced for the square-profiled bodies of CubeSats of 1U and 12U sizes. A topology search defines fingertip forms and configurations to fulfill requirements, and operational limitations are presented in terms of geometry and dynamic parameters. The grasping performance is then analyzed in the side grasp and corner grasp cases and validated with a numerical case study.
Graphical Abstract Figure
References
1.
Krag
, H.
, 2022
, “ESA's Annual Space Environment Report
,” GEN-DB-LOG-00288-OPS-SD, ESA Space Debris Office, Darmstadt, Germany.2.
Kessler
, D. J.
, and Cour-Palais
, B. G.
, 1978
, “Collision Frequency of Artificial Satellites: The Creation of a Debris Belt
,” J. Geophys. Res. A: Space Phys.
, 83
(A6
), pp. 2637
–2646
. 3.
Kessler
, D. J.
, 1991
, “Collisional Cascading: The Limits of Population Growth in Low Earth Orbit
,” Adv. Space Res.
, 11
(12
), pp. 63
–66
. 4.
Phipps
, C. R.
, Baker
, K. L.
, Libby
, S. B.
, Liedahl
, D. A.
, Olivier
, S. S.
, Pleasance
, L. D.
, Rubenchik
, A.
, et al, 2012
, “Removing Orbital Debris With Lasers
,” Adv. Space Res.
, 49
(9
), pp. 1283
–1300
. 5.
Soulard
, R.
, Quinn
, M. N.
, Tajima
, T.
, and Mourou
, G.
, 2014
, “ICAN: A Novel Laser Architecture for Space Debris Removal
,” Acta Astronaut.
, 105
(1
), pp. 192
–200
. 6.
Kawamoto
, S.
, Ohkawa
, Y.
, Kitamura
, S.
, and Nishida
, S.
, 2009
, “Strategy for Active Debris Removal Using Electrodynamic Tether
,” Trans. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn.
, 7
(ists26
), pp. Pr_2_7
–Pr_2_12
.7.
Sharf
, I.
, Thomsen
, B.
, Botta
, E. M.
, and Misra
, A. K.
, 2017
, “Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris
,” Acta Astronaut.
, 139
, pp. 332
–343
. 8.
Pfisterer
, M.
, Schillo
, K.
, Valle
, C.
, Lin
, K.-C.
, and Ham
, C.
, “The Development of a Propellantless Space Debris Mitigation Drag Sail for LEO Satellites
,” WMSCI – 15th World Multi-Conference on Systemics, Cybernetics and Informatics
, Orlando, FL
, June 19–22
, pp. 19
–22
.9.
Visagie
, L.
, Lappas
, V.
, and Erb
, S.
, 2015
, “Drag Sails for Space Debris Mitigation
,” Acta Astronaut.
, 109
, pp. 65
–75
. 10.
Bombardelli
, C.
, and Pelaez
, J.
, 2011
, “Ion Beam Shepherd for Contactless Space Debris Removal
,” J. Guid. Control Dyn.
, 34
(3
), pp. 916
–920
. 11.
Di Mella
, G.
, Pergola
, P.
, Ruggiero
, A.
, and Andrenucci
, M.
, 2012
, “Foam-Based Method for Active Space Debris Removal: Foam Characterization, Modeling and Testing
,” IAASS A Safer Space for Safer World
, Versailles, France
, Oct. 17–19
, Vol. 699, p. 5
.12.
Ganguli
, G.
, Crabtree
, C.
, Rudakov
, L.
, and Chappie
, S.
, 2012
, “Active Debris Removal by Micron-Scale Dust Injection
,” 2012 IEEE Aerospace Conference
, Big Sky, MT
, Mar. 3–10
, pp. 1
–9
.13.
Chopra
, C.
, and Chandra
, R.
, 2018
, “Small Satellite Deorbital System Using Magnetic Field Controlled Plasma
,” 2018 SpaceOps Conference, American Institute of Aeronautics and Astronautics
, Marseille, France
.14.
Oda
, M.
, 2000
, “Summary of NASDA's ETS-VII Robot Satellite Mission
,” J. Robot. Mechatron.
, 12
(4
), pp. 417
–424
. 15.
Yoshida
, K.
, Hashizume
, K.
, and Abiko
, S.
, 2001
, “Zero Reaction Maneuver: Flight Validation With ETS-VII Space Robot and Extension to Kinematically Redundant Arm
,” Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation
, Seoul, South Korea
, May 21–26
, Vol. 1, pp. 441
–446
..16.
Rupp
, T.
, Boge
, T.
, Kiehling
, R.
, and Sellmaier
, F.
, 2009
, “Flight Dynamics Challenges Of The German On-Orbit Servicing Mission DEOS
,” 21st International Symposium on Space Flight Dynamics
, Toulouse, France
, Sept. 28–Oct. 2
.17.
Sommer
, B.
, “Automation and Robotics in the German Space Program—Unmanned On-Orbit Servicing (OOS) & the TECSAS Mission
,” 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law
, Vancouver, Canada
, Oct. 4–8
.18.
Kaiser
, C.
, Sjöberg
, F.
, Delcura
, J. M.
, and Eilertsen
, B.
, 2008
, “SMART-OLEV—An Orbital Life Extension Vehicle for Servicing Commercial Spacecrafts in GEO
,” Acta Astronaut.
, 63
(1–4
), pp. 400
–410
. 19.
Kuwao
, F.
, Otsuka
, A.
, Hayashi
, M.
, Aiko
, Y.
, Wakabayashi
, Y.
, Sato
, N.
, and Doi
, S.
, 2003
, “Operation Concept of JEMRMS
,” Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: I-SAIRAS 2003
, Nara, Japan
, May 19–23
.20.
Boumans
, R.
, and Heemskerk
, C.
, 1998
, “The European Robotic Arm for the International Space Station
,” Robot. Auton. Syst.
, 23
(1–2
), pp. 17
–27
. 21.
Xu
, W.
, Zhang
, J.
, Qian
, H.
, Chen
, Y.
, and Xu
, Y.
, 2013
, “Identifying the Singularity Conditions of Canadarm2 Based on Elementary Jacobian Transformation
,” IEEE International Conference on Intelligent Robots and Systems
, Tokyo, Japan
, Nov. 3–7
, pp. 795
–800
.22.
Coleshill
, E.
, Oshinowo
, L.
, Rembala
, R.
, Bina
, B.
, Rey
, D.
, and Sindelar
, S.
, 2009
, “Dextre: Improving Maintenance Operations on the International Space Station
,” Acta Astronaut.
, 64
(9–10
), pp. 869
–874
. 23.
Laryssa
, P.
, Lindsay
, E.
, Layi
, O.
, Marius
, O.
, Nara
, K.
, Aris
, L.
, and Ed
, T.
, 2002
, “International Space Station Robotics: A Comparative Study of ERA, JEMRMS and MSS
,” 7th ESA Workshop Adv. Space Technol. Robot. Autom. ASTRA 2002
, Noordwijk, The Netherlands
, Nov. 19–21
, pp. 1
–8
.24.
Johnstone
, A.
, 2022
, “CubeSat Design Specification (1U-12U)
,” CP-CDS-R14.1. Cal Poly SLO, San Luis Obispo, CA.25.
Griesbach
, J. D.
, Westphal
, J.
, Hawes
, D.
, and Carrico
, J.
, 2013
, “Force Modeling and State Propagation for Navigation and Maneuver Planning for CubeSat Rendezvous, Proximity Operations, and Docking
,” Adv. Astronaut. Sci.
, 150
, pp. 573
–590
.26.
Underwood
, C.
, Pellegrino
, S.
, Lappas
, V. J.
, Bridges
, C. P.
, and Baker
, J.
, 2015
, “Using CubeSat/Micro-Satellite Technology to Demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST)
,” Acta Astronaut.
, 114
, pp. 112
–122
. 27.
Kunito
, S.
, 2018
, “CubeSat Docking and Resource Sharing Mechanism
,” Master’s thesis, Florida Institute of Technology
.28.
Branz
, F.
, Olivieri
, L.
, Sansone
, F.
, and Francesconi
, A.
, 2020
, “Miniature Docking Mechanism for CubeSats
,” Acta Astronaut.
, 176
, pp. 510
–519
. 29.
Bonivento
, C.
, Melchiorri
, C.
, Vassura
, G.
, Ferretti
, G.
, Maffezzoni
, C.
, Magnani
, G.
, Beccari
, G.
, Caselli
, S.
, and Zanichelli
, F.
, 1999
, “A Dexterious Gripper for Space Robotics
,” 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space
, Montreal, Canada
, May 23
, Vol. 440, pp. 637
–643
.30.
Gerstenmaier
, W. H.
, Krikalev
, S.
, Parker
, D.
, Leclerc
, G.
, and Shirama
, R.
, 2016
, “IDSS International Docking System Standard (IDSS) Interface Definition Document (IDD) Revision E, Revision E.”31.
Man
, W.
, Li
, X.
, Zhang
, Z.
, An
, J.
, Zhang
, G.
, and Yu
, D.
, 2021
, “Research on Space Target On-Orbit Capturing Methods
,” International Conference on Mechanical Design
, Singapore
, June 17–20
, pp. 321
–343
.32.
Ceccarelli
, M.
, 2004
, “Fundamentals of the Mechanics of Grasp,” Fundamentals of Mechanics of Robotic Manipulation
, M.
Ceccarelli
, ed., Springer
, Dordrecht, Netherlands
, pp. 241
–304
.33.
Monkman
, G. J.
, Hesse
, S.
, Steinmann
, R.
, and Schunk
, H.
, 2007
, Robot Grippers
, Wiley-VCH Verlag GmbH & Co. KGaA
, Weinheim
.34.
Titov
, A.
, and Ceccarelli
, M.
, 2023
, “Requirements and Problems for Space Berthing System,” Proceedings of Syrom 2022 & Robotics 2022
, I.
Doroftei
, M.
Nitulescu
, D.
Pisla
, and E.-C.
Lovasz
, eds., Springer International Publishing
, Cham
, pp. 127
–135
.35.
Titov
, A.
, and Ceccarelli
, M.
, 2023
, “Design and Performance of a Berthing Space Manipulator,” Design Advances in Aerospace Robotics
, Springer Nature
, Dordrecht
.36.
Titov
, A.
, and Ceccarelli
, M.
, 2023
, “Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator,” New Advances in Mechanisms, Transmissions and Applications
, M. A.
Laribi
, C. A.
Nelson
, M.
Ceccarelli
, and S.
Zeghloul
, eds., Springer Nature
, Dordrecht
, pp. 15
–22
.37.
Fehse
, W.
, 2003
, Automated Rendezvous and Docking of Spacecraft
, Cambridge University Press
, New York
.38.
Zhu
, F.
, 2023
, “A Guide to CubeSat Mission and Bus Design,” Guide CubeSat Mission Bus Des, https://pressbooks-dev.oer.hawaii.edu/epet302/, Accessed July 4, 2023.39.
Hao
, J.
, 2023
, “DFRobot_BMI160 Library,” DFRobot_BMI160, https://github.com/DFRobot/DFRobot_BMI160, Accessed December 12, 2023.40.
The MathWorks, Inc.
, 2023
, “MATLAB Documentation,” https://www.mathworks.com/help/matlab/index.html, Accessed October 12, 2023.Copyright © 2024 by ASME
You do not currently have access to this content.