Abstract

In this paper, the grasping operation of CubeSat microsatellites is analyzed with a topological study of grasping strategies as functions of CubeSat geometry. Grasping conditions and limitations are introduced for the square-profiled bodies of CubeSats of 1U and 12U sizes. A topology search defines fingertip forms and configurations to fulfill requirements, and operational limitations are presented in terms of geometry and dynamic parameters. The grasping performance is then analyzed in the side grasp and corner grasp cases and validated with a numerical case study.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Krag
,
H.
,
2022
, “
ESA's Annual Space Environment Report
,” GEN-DB-LOG-00288-OPS-SD, ESA Space Debris Office, Darmstadt, Germany.
2.
Kessler
,
D. J.
, and
Cour-Palais
,
B. G.
,
1978
, “
Collision Frequency of Artificial Satellites: The Creation of a Debris Belt
,”
J. Geophys. Res. A: Space Phys.
,
83
(
A6
), pp.
2637
2646
.
3.
Kessler
,
D. J.
,
1991
, “
Collisional Cascading: The Limits of Population Growth in Low Earth Orbit
,”
Adv. Space Res.
,
11
(
12
), pp.
63
66
.
4.
Phipps
,
C. R.
,
Baker
,
K. L.
,
Libby
,
S. B.
,
Liedahl
,
D. A.
,
Olivier
,
S. S.
,
Pleasance
,
L. D.
,
Rubenchik
,
A.
, et al
,
2012
, “
Removing Orbital Debris With Lasers
,”
Adv. Space Res.
,
49
(
9
), pp.
1283
1300
.
5.
Soulard
,
R.
,
Quinn
,
M. N.
,
Tajima
,
T.
, and
Mourou
,
G.
,
2014
, “
ICAN: A Novel Laser Architecture for Space Debris Removal
,”
Acta Astronaut.
,
105
(
1
), pp.
192
200
.
6.
Kawamoto
,
S.
,
Ohkawa
,
Y.
,
Kitamura
,
S.
, and
Nishida
,
S.
,
2009
, “
Strategy for Active Debris Removal Using Electrodynamic Tether
,”
Trans. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn.
,
7
(
ists26
), pp.
Pr_2_7
Pr_2_12
.
7.
Sharf
,
I.
,
Thomsen
,
B.
,
Botta
,
E. M.
, and
Misra
,
A. K.
,
2017
, “
Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris
,”
Acta Astronaut.
,
139
, pp.
332
343
.
8.
Pfisterer
,
M.
,
Schillo
,
K.
,
Valle
,
C.
,
Lin
,
K.-C.
, and
Ham
,
C.
, “
The Development of a Propellantless Space Debris Mitigation Drag Sail for LEO Satellites
,”
WMSCI – 15th World Multi-Conference on Systemics, Cybernetics and Informatics
,
Orlando, FL
,
June 19–22
, pp.
19
22
.
9.
Visagie
,
L.
,
Lappas
,
V.
, and
Erb
,
S.
,
2015
, “
Drag Sails for Space Debris Mitigation
,”
Acta Astronaut.
,
109
, pp.
65
75
.
10.
Bombardelli
,
C.
, and
Pelaez
,
J.
,
2011
, “
Ion Beam Shepherd for Contactless Space Debris Removal
,”
J. Guid. Control Dyn.
,
34
(
3
), pp.
916
920
.
11.
Di Mella
,
G.
,
Pergola
,
P.
,
Ruggiero
,
A.
, and
Andrenucci
,
M.
,
2012
, “
Foam-Based Method for Active Space Debris Removal: Foam Characterization, Modeling and Testing
,”
IAASS A Safer Space for Safer World
,
Versailles, France
,
Oct. 17–19
, Vol. 699, p.
5
.
12.
Ganguli
,
G.
,
Crabtree
,
C.
,
Rudakov
,
L.
, and
Chappie
,
S.
,
2012
, “
Active Debris Removal by Micron-Scale Dust Injection
,”
2012 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 3–10
, pp.
1
9
.
13.
Chopra
,
C.
, and
Chandra
,
R.
,
2018
, “
Small Satellite Deorbital System Using Magnetic Field Controlled Plasma
,”
2018 SpaceOps Conference, American Institute of Aeronautics and Astronautics
,
Marseille, France
.
14.
Oda
,
M.
,
2000
, “
Summary of NASDA's ETS-VII Robot Satellite Mission
,”
J. Robot. Mechatron.
,
12
(
4
), pp.
417
424
.
15.
Yoshida
,
K.
,
Hashizume
,
K.
, and
Abiko
,
S.
,
2001
, “
Zero Reaction Maneuver: Flight Validation With ETS-VII Space Robot and Extension to Kinematically Redundant Arm
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–26
, Vol. 1, pp.
441
446
..
16.
Rupp
,
T.
,
Boge
,
T.
,
Kiehling
,
R.
, and
Sellmaier
,
F.
,
2009
, “
Flight Dynamics Challenges Of The German On-Orbit Servicing Mission DEOS
,”
21st International Symposium on Space Flight Dynamics
,
Toulouse, France
,
Sept. 28–Oct. 2
.
17.
Sommer
,
B.
, “
Automation and Robotics in the German Space Program—Unmanned On-Orbit Servicing (OOS) & the TECSAS Mission
,”
55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law
,
Vancouver, Canada
,
Oct. 4–8
.
18.
Kaiser
,
C.
,
Sjöberg
,
F.
,
Delcura
,
J. M.
, and
Eilertsen
,
B.
,
2008
, “
SMART-OLEV—An Orbital Life Extension Vehicle for Servicing Commercial Spacecrafts in GEO
,”
Acta Astronaut.
,
63
(
1–4
), pp.
400
410
.
19.
Kuwao
,
F.
,
Otsuka
,
A.
,
Hayashi
,
M.
,
Aiko
,
Y.
,
Wakabayashi
,
Y.
,
Sato
,
N.
, and
Doi
,
S.
,
2003
, “
Operation Concept of JEMRMS
,”
Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: I-SAIRAS 2003
,
Nara, Japan
,
May 19–23
.
20.
Boumans
,
R.
, and
Heemskerk
,
C.
,
1998
, “
The European Robotic Arm for the International Space Station
,”
Robot. Auton. Syst.
,
23
(
1–2
), pp.
17
27
.
21.
Xu
,
W.
,
Zhang
,
J.
,
Qian
,
H.
,
Chen
,
Y.
, and
Xu
,
Y.
,
2013
, “
Identifying the Singularity Conditions of Canadarm2 Based on Elementary Jacobian Transformation
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
795
800
.
22.
Coleshill
,
E.
,
Oshinowo
,
L.
,
Rembala
,
R.
,
Bina
,
B.
,
Rey
,
D.
, and
Sindelar
,
S.
,
2009
, “
Dextre: Improving Maintenance Operations on the International Space Station
,”
Acta Astronaut.
,
64
(
9–10
), pp.
869
874
.
23.
Laryssa
,
P.
,
Lindsay
,
E.
,
Layi
,
O.
,
Marius
,
O.
,
Nara
,
K.
,
Aris
,
L.
, and
Ed
,
T.
,
2002
, “
International Space Station Robotics: A Comparative Study of ERA, JEMRMS and MSS
,”
7th ESA Workshop Adv. Space Technol. Robot. Autom. ASTRA 2002
,
Noordwijk, The Netherlands
,
Nov. 19–21
, pp.
1
8
.
24.
Johnstone
,
A.
,
2022
, “
CubeSat Design Specification (1U-12U)
,” CP-CDS-R14.1. Cal Poly SLO, San Luis Obispo, CA.
25.
Griesbach
,
J. D.
,
Westphal
,
J.
,
Hawes
,
D.
, and
Carrico
,
J.
,
2013
, “
Force Modeling and State Propagation for Navigation and Maneuver Planning for CubeSat Rendezvous, Proximity Operations, and Docking
,”
Adv. Astronaut. Sci.
,
150
, pp.
573
590
.
26.
Underwood
,
C.
,
Pellegrino
,
S.
,
Lappas
,
V. J.
,
Bridges
,
C. P.
, and
Baker
,
J.
,
2015
, “
Using CubeSat/Micro-Satellite Technology to Demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST)
,”
Acta Astronaut.
,
114
, pp.
112
122
.
27.
Kunito
,
S.
,
2018
, “
CubeSat Docking and Resource Sharing Mechanism
,” Master’s thesis,
Florida Institute of Technology
.
28.
Branz
,
F.
,
Olivieri
,
L.
,
Sansone
,
F.
, and
Francesconi
,
A.
,
2020
, “
Miniature Docking Mechanism for CubeSats
,”
Acta Astronaut.
,
176
, pp.
510
519
.
29.
Bonivento
,
C.
,
Melchiorri
,
C.
,
Vassura
,
G.
,
Ferretti
,
G.
,
Maffezzoni
,
C.
,
Magnani
,
G.
,
Beccari
,
G.
,
Caselli
,
S.
, and
Zanichelli
,
F.
,
1999
, “
A Dexterious Gripper for Space Robotics
,”
5th International Symposium on Artificial Intelligence, Robotics and Automation in Space
,
Montreal, Canada
,
May 23
, Vol. 440, pp.
637
643
.
30.
Gerstenmaier
,
W. H.
,
Krikalev
,
S.
,
Parker
,
D.
,
Leclerc
,
G.
, and
Shirama
,
R.
,
2016
, “IDSS International Docking System Standard (IDSS) Interface Definition Document (IDD) Revision E, Revision E.”
31.
Man
,
W.
,
Li
,
X.
,
Zhang
,
Z.
,
An
,
J.
,
Zhang
,
G.
, and
Yu
,
D.
,
2021
, “
Research on Space Target On-Orbit Capturing Methods
,”
International Conference on Mechanical Design
,
Singapore
,
June 17–20
, pp.
321
343
.
32.
Ceccarelli
,
M.
,
2004
, “Fundamentals of the Mechanics of Grasp,”
Fundamentals of Mechanics of Robotic Manipulation
,
M.
Ceccarelli
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
241
304
.
33.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
,
2007
,
Robot Grippers
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
.
34.
Titov
,
A.
, and
Ceccarelli
,
M.
,
2023
, “Requirements and Problems for Space Berthing System,”
Proceedings of Syrom 2022 & Robotics 2022
,
I.
Doroftei
,
M.
Nitulescu
,
D.
Pisla
, and
E.-C.
Lovasz
, eds.,
Springer International Publishing
,
Cham
, pp.
127
135
.
35.
Titov
,
A.
, and
Ceccarelli
,
M.
,
2023
, “Design and Performance of a Berthing Space Manipulator,”
Design Advances in Aerospace Robotics
,
Springer Nature
,
Dordrecht
.
36.
Titov
,
A.
, and
Ceccarelli
,
M.
,
2023
, “Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator,”
New Advances in Mechanisms, Transmissions and Applications
,
M. A.
Laribi
,
C. A.
Nelson
,
M.
Ceccarelli
, and
S.
Zeghloul
, eds.,
Springer Nature
,
Dordrecht
, pp.
15
22
.
37.
Fehse
,
W.
,
2003
,
Automated Rendezvous and Docking of Spacecraft
,
Cambridge University Press
,
New York
.
38.
Zhu
,
F.
,
2023
, “A Guide to CubeSat Mission and Bus Design,” Guide CubeSat Mission Bus Des, https://pressbooks-dev.oer.hawaii.edu/epet302/, Accessed July 4, 2023.
39.
Hao
,
J.
,
2023
, “DFRobot_BMI160 Library,” DFRobot_BMI160, https://github.com/DFRobot/DFRobot_BMI160, Accessed December 12, 2023.
40.
The MathWorks, Inc.
,
2023
, “MATLAB Documentation,” https://www.mathworks.com/help/matlab/index.html, Accessed October 12, 2023.
You do not currently have access to this content.