Abstract

This research is about designing multi-degree-of-freedom (multi-DOF) compliant mechanisms with decoupled inputs that can be independently locked/unlocked using bistable switches to achieve different combinations of DOFs. A case study mechanism achieving two decoupled rotational DOFs (tip and tilt) is designed, fabricated, and characterized. It can be triggered using two pairs of bistable switches, achieving drastically different states of torsional stiffness for each DOF in four sets of DOF combinations—no DOFs, a tip DOF, a tilt DOF, and both tip and tilt DOFs. Bistability and stiffness cancelation principles are exploited to achieve the desired changes in stiffness. Two flexure elements can be identified—the switch providing a negative stiffness and the cross-axis-flexural-pivot (CAFP) producing a positive stiffness. The mechanism is tuned to achieve static balancing, reaching a near-zero stiffness over much of its range. The pseudo-rigid body model and two-dimensional (2D) finite element model (FEM) are combined defining a fast method to dimension the system. The 3D FEM is simulated to validate the obtained results. For each DOF, the system is tested in two configurations (stiff and compliant) for three cycles over a ±10 deg rotation, achieving a stiffness reduction of around 99%. Comparable stiffness values were measured after triggering the switches more than once, repetitively reaching the required two states of stiffness, confirming the system's usability in practical applications. The positive stiffness provided by the CAFP is measured and compared to the device's overall stiffness, highlighting the stiffness cancelation concept.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley and Sons
,
New York
.
2.
Fowler
,
R. M.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
215
.
3.
Mathew
,
B.
,
Bharatpatil
,
V.
,
Anilchamoli
,
Raikwar
,
M.
,
Negi
,
M. S.
, and
Singh
,
H.
,
2021
, “
Compliant Mechanism and Origami Usage in Aerospace and Space Application
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
775
(
1
), p.
012008
.
4.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
, et al
,
2013
, “
Variable Impedance Actuators: A Review
,”
Robot. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
5.
Smreczak
,
M.
,
Rubbert
,
L.
, and
Baur
,
C.
,
2021
, “
Design of a Compliant Load Cell With Adjustable Stiffness
,”
Precis. Eng.
,
72
, pp.
259
271
.
6.
Liu
,
K.
,
Han
,
L.
,
Hu
,
W.
,
Ji
,
L.
,
Zhu
,
S.
,
Wan
,
Z.
,
Yang
,
X.
, et al
,
2020
, “
4D Printed Zero Poisson’s Ratio Metamaterial With Switching Function of Mechanical and Vibration Isolation Performance
,”
Mater. Des.
,
196
, p.
109153
.
7.
Blanc
,
L.
,
Delchambre
,
A.
, and
Lambert
,
P.
,
2017
, “
Flexible Medical Devices: Review of Controllable Stiffness Solutions
,”
Actuators
,
6
(
3
), p.
23
.
8.
Kornbluh
,
R.
,
Prahlad
,
H.
,
Pelrine
,
R.
,
Stanford
,
S.
,
Rosenthal
,
M.
, and
von Guggenberg
,
P.
,
2004
, “
Rubber to Rigid, Clamped to Undamped: Toward Composite Materials With Wide-Range Controllable Stiffness and Damping
,”
Smart Struct. Mater.
,
5388
, pp.
372
386
.
9.
Luo
,
C.
,
Song
,
Y.
,
Zhao
,
C.
,
Thirumalai
,
S.
,
Ladner
,
I.
,
Cullinan
,
M. A.
, and
Hopkins
,
J. B.
,
2020
, “
Design and Fabrication of a Three-Dimensional Meso-sized Robotic Metamaterial With Actively Controlled Properties
,”
Mater. Horiz.
,
7
(
1
), pp.
229
235
.
10.
Hoetmer
,
K.
,
Herder
,
J. L.
, and
Kim
,
C. J.
,
2009
, “
A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
313
323
.
11.
Pluimers
,
P. J.
,
Tolou
,
N.
,
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Herder
,
J. L.
,
2012
, “
A Compliant On/Off Connection Mechanism for Preloading Statically Balanced Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
,
Chicago, IL
,
Aug. 12
, pp.
373
377
.
12.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
13.
Schenk
,
M.
, and
Guest
,
S. D.
,
2014
, “
On Zero Stiffness
,”
J. Mech. Eng. Sci.
,
228
(
10
), pp.
1701
1714
.
14.
Kuppens
,
P. R.
,
Bessa
,
M. A.
,
Herder
,
J. L.
, and
Hopkins
,
J. B.
,
2021
, “
Monolithic Binary Stiffness Building Blocks for Mechanical Digital Machines
,”
Extreme Mech. Lett.
,
42
, p.
101120
.
15.
Shimohara
,
S.
,
Lee
,
R. H.
, and
Hopkins
,
J. B.
,
2022
, “
Compliant Mechanisms That Achieve Binary Stiffness Along Multiple Degrees of Freedom
,”
J. Compos. Mater.
,
57
(
4
), pp.
645
657
.
16.
Machekposhti
,
D. F.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2017
, “
A Fully Compliant Homokinetic Coupling
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012301
.
17.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
18.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
19.
Hopkins
,
J. B.
, and
McCalib Jr.
,
D.
,
2016
, “
Synthesizing Multi-axis Flexure Systems With Decoupled Actuators
,”
Precis. Eng.
,
46
, pp.
206
220
.
20.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
21.
Bilancia
,
P.
, and
Berselli
,
G.
,
2021
, “
An Overview of Procedures and Tools for Designing Nonstandard Beam-Based Compliant Mechanisms
,”
Comput. Aided Des.
,
134
, p.
103001
.
22.
Zirbel
,
S. A.
,
Tolman
,
K. A.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2016
, “
Bistable Mechanisms for Space Applications
,”
PLoS One
,
11
(
12
), pp.
1
18
.
23.
Parkinson
,
M. B.
,
Jensen
,
B. D.
, and
Roach
,
G. M.
,
2000
, “
Optimization-Based Design of a Fully-Compliant Bistable Micromechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7A: 26th Biennial Mechanisms and Robotics Conference
,
Baltimore, MD
,
Sept. 10–13
, pp.
635
641
.
24.
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2010
, “
Criteria for the Static Balancing of Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
465
473
.
25.
Xu
,
X.
,
Ge
,
J.
,
Hu
,
M.
,
Zhang
,
Q.
,
Wang
,
H.
,
Wu
,
J.
,
Zhu
,
H.
, and
Hu
,
L.
,
2024
, “
High-Bandwidth Tilt–Tip Mirror With Octagonal Prism Flexible Mechanism
,”
Appl. Opt.
,
63
(
3
), pp.
783
792
.
You do not currently have access to this content.