Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Underwater vehicle-manipulator systems (UVMSs) are underwater robots equipped with one or more manipulators to perform intervention missions. This article provides the mechanical, electrical, and software design of a novel UVMS equipped with a continuum manipulator, referred to as a continuum-UVMS. A kinematic model for the continuum-UVMS is derived in order to build an algorithm to resolve the robot’s redundancy and generate joint space commands. Different methods to optimize the trajectory for specific tasks are proposed using both the weighted least norm solution and the gradient projection method. Kinematic simulation results are analyzed to assess the performance of the proposed algorithm. Finally, the continuum-UVMS is deployed in an experimental demonstration in which both teleoperation and autonomous control are tested for a given reference trajectory.

References

1.
Trotter
,
J. A.
,
Pattiaratchi
,
C.
,
Montagna
,
P.
,
Taviani
,
M.
,
Falter
,
J.
,
Thresher
,
R.
,
Hosie
,
A.
,
Haig
,
D.
,
Foglini
,
F.
,
Hua
,
F.
, and
McCulloch
,
M. T.
,
2019
, “
First ROV Exploration of the Perth Canyon: Canyon Setting, Faunal Observations, and Anthropogenic Impacts
,”
Front. Marine Sci.
,
6
, p.
173
.
2.
Fernandes
,
V. H.
,
Neto
,
A. A.
, and
Rodrigues
,
D. D.
,
2015
, “
Pipeline Inspection With AUV
,”
2015 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics)
,
Rio de Janiero, Brazil
,
July 29–31
, pp.
1
5
.
3.
Rundtop
,
P.
, and
Frank
,
K.
,
2016
, “
Experimental Evaluation of Hydroacoustic Instruments for ROV Navigation Along Aquaculture Net Pens
,”
Aquacult. Eng.
,
74
, pp.
143
156
.
4.
Ribas
,
D.
,
Ridao
,
P.
,
Magí
,
L.
,
Palomeras
,
N.
, and
Carreras
,
M.
,
2011
, “
The Girona 500, a Multipurpose Autonomous Underwater Vehicle
,”
OCEANS 2011 IEEE - Spain
,
Santander, Spain
,
June 6–9
, IEEE, pp.
1
5
.
5.
Ribas
,
D.
,
Palomeras
,
N.
,
Ridao
,
P.
,
Carreras
,
M.
, and
Mallios
,
A.
,
2012
, “
Girona 500 AUV: From Survey to Intervention
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
46
53
.
6.
Yuh
,
J.
,
Choi
,
S.
,
Ikehara
,
C.
,
Kim
,
G.
,
McMurty
,
G.
,
Ghasemi-Nejhad
,
M.
,
Sarkar
,
N.
, and
Sugihara
,
K.
,
1998
, “
Design of a Semi-autonomous Underwater Vehicle for Intervention Missions (SAUVIM)
,”
Proceedings of 1998 International Symposium on Underwater Technology
,
Tokyo, Japan
,
Apr. 17
, IEEE, pp.
63
68
.
7.
Marani
,
G.
,
Choi
,
S. K.
, and
Yuh
,
J.
,
2009
, “
Underwater Autonomous Manipulation for Intervention Missions Auvs
,”
Ocean. Eng.
,
36
(
1
), pp.
15
23
.
8.
Marais
,
W. J.
,
Williams
,
S. B.
, and
Pizarro
,
O.
,
2022
, “
Go With the Flow: Energy Minimising Periodic Trajectories for UVMS
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, IEEE, pp.
1
7
.
9.
McConnell
,
J.
,
Chen
,
F.
, and
Englot
,
B.
,
2022
, “
Overhead Image Factors for Underwater Sonar-Based Slam
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4901
4908
.
10.
Lane
,
D.
,
Davies
,
J.
,
Casalino
,
G.
,
Bartolini
,
G.
,
Cannata
,
G.
,
Veruggio
,
G.
,
Canals
,
M.
,
Smith
,
C.
,
O’Brien
,
D.
,
Pickett
,
M.
,
Robinson
,
G.
,
Jones
,
D.
,
Scott
,
E.
,
Ferrara
,
A.
,
Angelleti
,
D.
,
Coccoli
,
M.
,
Bono
,
R.
,
Virgili
,
P.
,
Pallas
,
R.
, and
Gracia
,
E.
,
1997
, “
Amadeus: Advanced Manipulation for Deep Underwater Sampling
,”
IEEE Rob. Autom. Mag.
,
4
(
4
), pp.
34
45
.
11.
Cianchetti
,
M.
,
Calisti
,
M.
,
Margheri
,
L.
,
Kuba
,
M.
, and
Laschi
,
C.
,
2015
, “
Bioinspired Locomotion and Grasping in Water: The Soft Eight-Arm Octopus Robot
,”
Bioinspr. Biomim.
,
10
(
3
), p.
035003
.
12.
Liu
,
J.
,
Iacoponi
,
S.
,
Laschi
,
C.
,
Wen
,
L.
, and
Calisti
,
M.
,
2020
, “
Underwater Mobile Manipulation: A Soft Arm on a Benthic Legged Robot
,”
IEEE Rob. Autom. Mag.
,
27
(
4
), pp.
12
26
.
13.
Ma
,
N.
,
Monk
,
S.
, and
Cheneler
,
D.
,
2022
, “
Design, Prototyping and Test of a Dual-Arm Continuum Robot for Underwater Environments
,”
2022 7th International Conference on Robotics and Automation Engineering (ICRAE)
,
Singapore
,
Nov. 18–20
, IEEE, pp.
158
164
.
14.
Gong
,
Z.
,
Chen
,
B.
,
Liu
,
J.
,
Fang
,
X.
,
Liu
,
Z.
,
Wang
,
T.
, and
Wen
,
L.
,
2019
, “
An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water
,”
Front. Rob. AI
,
6
, p.
26
.
15.
Hannan
,
M.
, and
Walker
,
I.
,
2001
, “
The ‘Elephant Trunk’ Manipulator, Design and Implementation
,”
2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), Vol. 1
,
Como, Italy
,
July 8–12
, IEEE, pp.
14
19
.
16.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
17.
Ridao
,
P.
,
Carreras
,
M.
,
Ribas
,
D.
,
Sanz
,
P. J.
, and
Oliver
,
G.
,
2015
, “
Intervention AUVS: The Next Challenge
,”
Annu. Rev. Control
,
40
, pp.
227
241
.
18.
Palomeras
,
N.
,
Penalver
,
A.
,
Massot-Campos
,
M.
,
Vallicrosa
,
G.
,
Negre
,
P. L.
,
Fernández
,
J. J.
,
Ridao
,
P.
,
Sanz
,
P. J.
,
Oliver-Codina
,
G.
, and
Palomer
,
A.
,
2014
, “
I-AUV Docking and Intervention in a Subsea Panel
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
2279
2285
.
19.
Ribas
,
D.
,
Ridao
,
P.
,
Turetta
,
A.
,
Melchiorri
,
C.
,
Palli
,
G.
,
Fernández
,
J. J.
, and
Sanz
,
P. J.
,
2015
, “
I-AUV Mechatronics Integration for the Trident FP7 Project
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2583
2592
.
20.
Sarkar
,
N.
, and
Podder
,
T. K.
,
2001
, “
Coordinated Motion Planning and Control of Autonomous Underwater Vehicle-Manipulator Systems Subject to Drag Optimization
,”
IEEE J. Oceanic Eng.
,
26
(
2
), pp.
228
239
.
21.
Yu
,
F.
,
Zhu
,
Q.
, and
Chen
,
Y.
,
2023
, “
Adaptive Fractional-Order Fast-Terminal-Type Sliding Mode Control for Underwater Vehicle-Manipulator Systems
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064501
.
22.
Liegeois
,
A.
et al.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
,
7
(
12
), pp.
868
871
.
23.
Walker
,
I. D.
, and
Marcus
,
S. I.
,
1988
, “
Subtask Performance by Redundancy Resolution for Redundant Robot Manipulators
,”
IEEE J. Rob. Autom.
,
4
(
3
), pp.
350
354
. doi: 10.1109/56.795
24.
Liu
,
Y.
,
Zhao
,
J.
, and
Xie
,
B.
,
2010
, “
Obstacle Avoidance for Redundant Manipulators Based on a Novel Gradient Projection Method With a Functional Scalar
,”
2010 IEEE International Conference on Robotics and Biomimetics
,
Tianjin, China
,
Dec. 14–18
, IEEE, pp.
1704
1709
.
25.
Slotine
,
S. B.
, and
Siciliano
,
B.
,
1991
, “
A General Framework for Managing Multiple Tasks in Highly Redundant Robotic Systems
,”
Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments
,
Pisa, Italy
,
June 19–22
, Vol. 2, pp.
1211
1216
.
26.
Moe
,
S.
,
Antonelli
,
G.
,
Teel
,
A. R.
,
Pettersen
,
K. Y.
, and
Schrimpf
,
J.
,
2016
, “
Set-Based Tasks Within the Singularity-Robust Multiple Task-Priority Inverse Kinematics Framework: General Formulation, Stability Analysis, and Experimental Results
,”
Front. Rob. AI
,
3
, p.
16
.
27.
Chan
,
T. F.
, and
Dubey
,
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE. Trans. Rob. Autom.
,
11
(
2
), pp.
286
292
. doi: 10.1109/70.370511
28.
Soylu
,
S.
,
Buckham
,
B. J.
, and
Podhorodeski
,
R. P.
,
2010
, “
Redundancy Resolution for Underwater Mobile Manipulators
,”
Ocean. Eng.
,
37
(
2–3
), pp.
325
343
.
29.
Flacco
,
F.
,
De Luca
,
A.
, and
Khatib
,
O.
,
2012
, “
Motion Control of Redundant Robots Under Joint Constraints: Saturation in the Null Space
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
285
292
.
30.
Xing
,
H.
,
Gong
,
Z.
,
Ding
,
L.
,
Torabi
,
A.
,
Chen
,
J.
,
Gao
,
H.
, and
Tavakoli
,
M.
,
2023
, “
An Adaptive Multi-objective Motion Distribution Framework for Wheeled Mobile Manipulators Via Null-Space Exploration
,”
Mechatronics
,
90
(
102949
).
31.
Podder
,
T. K.
, and
Sarkar
,
N.
,
2004
, “
A Unified Dynamics-Based Motion Planning Algorithm for Autonomous Underwater Vehicle-Manipulator Systems (UVMS)
,”
Robotica
,
22
(
1
), pp.
117
128
.
32.
Soylu
,
S.
,
Buckham
,
B. J.
, and
Podhorodeski
,
R. P.
,
2007
, “
Dexterous Task-Priority Based Redundancy Resolution for Underwater Manipulator Systems
,”
Trans. Can. Soc. Mech. Eng.
,
31
(
4
), pp.
519
533
.
33.
Casalino
,
G.
,
Zereik
,
E.
,
Simetti
,
E.
,
Torelli
,
S.
,
Sperindé
,
A.
, and
Turetta
,
A.
,
2012
, “
Agility for Underwater Floating Manipulation: Task & Subsystem Priority Based Control Strategy
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
1772
1779
.
34.
Antonelli
,
G.
,
2006
,
Underwater Robots—Motion and Force Control of Vehicle-Manipulator Systems
, 2nd ed.,
Springer International Publishing
,
Germany
.
35.
Simetti
,
E.
,
Casalino
,
G.
,
Torelli
,
S.
,
Sperinde
,
A.
, and
Turetta
,
A.
,
2014
, “
Floating Underwater Manipulation: Developed Control Methodology and Experimental Validation Within the Trident Project
,”
J. Field Rob.
,
31
(
3
), pp.
364
385
.
36.
Fernández
,
J. J.
,
Prats
,
M.
,
Sanz
,
P. J.
,
García
,
J. C.
,
Marin
,
R.
,
Robinson
,
M.
,
Ribas
,
D.
, and
Ridao
,
P.
,
2013
, “
Grasping for the Seabed: Developing a New Underwater Robot Arm for Shallow-Water Intervention
,”
IEEE Rob. Autom. Mag.
,
20
(
4
), pp.
121
130
.
37.
Wang
,
Y.
,
Wang
,
S.
,
Wei
,
Q.
,
Tan
,
M.
,
Zhou
,
C.
, and
Yu
,
J.
,
2015
, “
Development of an Underwater Manipulator and Its Free-Floating Autonomous Operation
,”
IEEE/ASME Trans. Mechatron.
,
21
(
2
), pp.
815
824
.
38.
Fang
,
Y.
,
Dong
,
X.
,
Mohammad
,
A.
, and
Axinte
,
D.
,
2023
, “
Design and Control of a Multiple-Section Continuum Robot With a Hybrid Sensing System
,”
IEEE/ASME Trans. Mechatron.
,
28
(
3
), pp.
1522
1533
.
39.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041001
.
40.
Na
,
Y.-m.
,
Lee
,
H.-s.
, and
Park
,
J.-k.
,
2020
, “
Fabrication and Experiment of an Automatic Continuum Robot System Using Image Recognition
,”
ASME J. Mech. Rob.
,
12
(
1
),
p. 011017
.
41.
Liu
,
Y.
,
Ge
,
Z.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
42.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the Octarm Continuum Manipulator
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006
,
Orlando, FL
,
May 15–19
, IEEE, pp.
2336
2341
.
43.
Davies
,
J. B. C.
,
Lane
,
D.
,
Robinson
,
G.
,
O’Brien
,
D.
,
Pickett
,
M.
,
Sfakiotakis
,
M.
, and
Deacon
,
B.
,
1998
, “
Subsea Applications of Continuum Robots
,”
Proceedings of 1998 International Symposium on Underwater Technology
,
Tokyo, Japan
,
Apr. 17
, IEEE, pp.
363
369
.
44.
Zheng
,
T.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Kang
,
R.
,
Medrano Cerda
,
G. A.
,
Cianchetti
,
M.
,
Follador
,
M.
,
Godage
,
I. S.
, and
Caldwell
,
D. G.
,
2013
, “
Model Validation of an Octopus Inspired Continuum Robotic Arm for Use in Underwater Environments
,”
ASME J. Mech. Rob.
,
5
(
2
),
p. 021004
.
45.
Sitler
,
J. L.
, and
Wang
,
L.
,
2022
, “
A Modular Open-Source Continuum Manipulator for Underwater Remotely Operated Vehicles
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060906
.
46.
Wang
,
L.
,
2022
, “Open Source Modular Continuum Robot Project,” https://longwang.in/modular-continuum-manipulator/, Accessed January 30, 2023.
47.
Tlegenov
,
Y.
,
Telegenov
,
K.
, and
Shintemirov
,
A.
,
2014
, “
An Open-Source 3D Printed Underactuated Robotic Gripper
,”
2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA)
,
Senigallia, Italy
,
Sept. 10–12
, IEEE, pp.
1
6
.
48.
McConnell
,
J.
, “BlueROV2 Heavy ROS Package,” https://github.com/jake3991/Argonaut, Accessed January 30, 2023.
49.
Ambar
,
R. B.
,
Sagara
,
S.
, and
Imaike
,
K.
,
2015
, “
Experiment on a Dual-Arm Underwater Robot Using Resolved Acceleration Control Method
,”
Artif. Life Rob.
,
20
(
1
), pp.
34
41
.
50.
Cieslak
,
P.
,
Ridao
,
P.
, and
Giergiel
,
M.
,
2015
, “
Autonomous Underwater Panel Operation by GIRONA500 UVMS: A Practical Approach to Autonomous Underwater Manipulation
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
529
536
.
51.
Heshmati-Alamdari
,
S.
,
Bechlioulis
,
C. P.
,
Karras
,
G. C.
,
Nikou
,
A.
,
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2018
, “
A Robust Interaction Control Approach for Underwater Vehicle Manipulator Systems
,”
Annu. Rev. Control
,
46
, pp.
315
325
.
You do not currently have access to this content.