Abstract

The subject of this article is the elastostatics of a novel three-limb, full-mobility parallel-kinematics machine (PKM) with flexible links, intended for high-frequency, small-amplitude operations. The objective is to establish the Cartesian stiffness model and performance indices capable of guiding the structural design of the machines of interest. We base our analysis on what we term an elastostatic Cartesian model: the light-weight limb rods are modeled as identical, massless, linearly elastic beams; the motor shafts and couplings are modeled likewise, with the beams replaced by identical, massless, linearly elastic torsional springs, both link flexibility and actuator flexibility thus being considered. The moving platform is assumed to be the only moving rigid body of the machine. This platform is thus regarded as a rigid body elastically mounted onto the base platform via a six-degree-of-freedom (six-DoF) Cartesian spring. Then, the PKM 6×6 Cartesian stiffness matrix, considering the flexibility of both limb rods and motor shafts, is derived via the pertinent kinetostatic relations. Moreover, three alternative indices are defined from this model to evaluate the robot stiffness, which allows us to choose the most appropriate one for specific applications.

References

1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
2.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
157
182
.
3.
Merlet
,
J. P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
Dordrecht
.
4.
Boër
,
C. R.
,
Molinari-Tosatti
,
L.
, and
Smith
,
K. S.
,
2012
,
Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,
Springer
,
London
.
5.
Taghirad
,
H. D.
,
2013
,
Parallel Robots: Mechanics and Control
,
CRC Press
,
Boca Raton, FL
.
6.
Briot
,
S.
, and
Khalil
,
W.
,
2015
,
Dynamics of Parallel Robots
,
Springer
,
Switzerland
.
7.
Podhorodeski
,
R. P.
, and
Pittens
,
K. H.
,
1994
, “
A Class of Parallel Manipulators Based on Kinematically Simple Branches
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
908
914
.
8.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
AMSE J. Mech. Rob.
,
9
(
5
), p.
051003
.
9.
Karimi Eskandary
,
P.
, and
Angeles
,
J.
,
2018
, “
The Translating Π-Joint: Design and Applications
,”
Mech. Mach. Theory
,
122
, pp.
361
370
.
10.
Monsarrat
,
B.
, and
Gosselin
,
C. M.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
966
.
11.
Yang
,
G. L.
,
Chen
,
I. M.
,
Chen
,
W. H.
, and
Lin
,
W.
,
2004
, “
Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-Motion Architecture
,”
IEEE Trans. Rob. Autom.
,
20
(
5
), pp.
876
884
.
12.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3 X PPRS Parallel Kinematic Mechanism
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
369
378
.
13.
Fu
,
J. X.
,
Gao
,
F.
,
Pan
,
Y.
, and
Du
,
H.
,
2015
, “
Forward Kinematics Solutions of a Special Six-Degree-of-Freedom Parallel Manipulator With Three Limbs
,”
Adv. Mech. Eng.
,
7
(
5
), p.
1687814015582118
.
14.
Chen
,
C.
,
Gayral
,
T.
,
Caro
,
S.
,
Chablat
,
D.
,
Moroz
,
G.
, and
Abeywardena
,
S.
,
2012
, “
A Six Degree of Freedom Epicyclic-Parallel Manipulator
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041011
.
15.
Yoon
,
J. W.
,
Ryu
,
J.
, and
Hwang
,
Y. K.
,
2010
, “
Optimum Design of 6-DOF Parallel Manipulator With Translational/Rotational Workspaces for Haptic Device Application
,”
J. Mech. Sci. Technol.
,
24
(
5
), pp.
1151
1162
.
16.
Li
,
W.
, and
Angeles
,
J.
,
2018
, “
The Design of a 3-CPS_ Parallel Robot for Maximum Dexterity
,”
Mech. Mach. Theory
,
122
, pp.
279
291
.
17.
Lončarić
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.
18.
Ball
,
R. S.
,
1876
, “
The Theory of Screws: A Study in the Dynamics of a Rigid Body
,”
Math. Annal.
,
9
(
4
), pp.
541
553
.
19.
Selig
,
J. M.
,
2013
,
Geometrical Methods in Robotics
,
Springer
,
New York
.
20.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
,
1995
, “
On the Optimum Design of Stewart Platform Type Parallel Manipulators
,”
Robotica
,
13
(
2
), pp.
133
140
.
21.
Xu
,
Q. S.
, and
Li
,
Y. M.
,
2006
, “
GA-Based Architecture Optimization of a 3-PUU Parallel Manipulator for Stiffness Performance
,”
2006 6th World Congress on Intelligent Control and Automation
,
Dalian, China
,
June 21–23
, Vols. 1–12, p.
153
.
22.
Schneider
,
P.
, and
Eberly
,
D. H.
,
2002
,
Geometric Tools for Computer Graphics
,
Elsevier
,
San Francisco, CA
.
23.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2015
, “
The Principal Axes Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
191
207
.
24.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
.
25.
Stramigioli
,
S.
, and
Bruyninckx
,
H.
,
2001
, “
Geometry and Screw Theory for Robotics
,” Tutorial in ICRA, Vol. 2001, p.
75
.
26.
Euler
,
L.
,
1776
, “
Formulae Generales Pro Translatione Quacunque Corporum Rigidorum
,”
Novi Commentarii academiae scientiarum Petropolitanae
, pp.
189
207
.
27.
Angeles
,
J.
,
2010
, “
On the Nature of the Cartesian Stiffness Matrix
,”
Ingeniería Mecánica, Tecnol. y Desarrollo
,
3
(
5
), pp.
163
170
.
28.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
29.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
30.
Pottmann
,
H.
, and
Wallner
,
J.
,
2001
,
Computational Line Geometry
,
Springer
,
Berlin
.
31.
Görgülü
,
İ.
,
Carbone
,
G.
, and
Dede
,
M. C.
,
2020
, “
Time Efficient Stiffness Model Computation for a Parallel Haptic Mechanism Via the Virtual Joint Method
,”
Mech. Mach. Theory
,
143
, p.
103614
.
32.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2000
, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
146
156
.
33.
Schimmels
,
J. M.
, and
Huang
,
S.
,
2000
, “Spatial Parallel Compliant Mechanism,” Feb. 8, US Patent 6,021,579.
34.
Yaskawa
,
2002
,
"Sigma-Ⅱ Seiries SGMH/SGDM User's Manual: Servo Selection and Data Sheets," Manual No. SIE-S800-31 1D
.
35.
Ning
,
J.
,
Fang
,
M.
,
Ran
,
W.
,
Chen
,
C.
, and
Li
,
Y.
,
2020
, “
Rapid Multi-Sensor Feature Fusion Based on Non-Stationary Kernel JADE for the Small-Amplitude Hunting Monitoring of High-Speed Trains
,”
Sensors
,
20
(
12
), p.
3457
.
You do not currently have access to this content.