This paper proposes a theoretical model for characterizing manufacturing error induced spatial parasitic motions (MESPM) of compliant mechanisms (CM), and investigates the inherent statistic features of MESPM using Monte Carlo simulation. It also applies and extends a novel finite beam based matrix modeling (FBMM) method to theoretically derive the elastic deformation behavior of an imperfect flexural linkage (IFL), which is a basic element of a wide spectrum of compliant mechanisms. A case study of a well-known double parallelogram compliant mechanism (DPCM) is also conducted, and the practical parasitic motions of a prototype DPCM are characterized by laser interferometer based measurements.

References

1.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2009
, “
A Flexure-Based Mechanism and Control Methodology for Ultra-Precision Turning Operation
,”
Precis. Eng.
,
33
(
2
), pp.
160
166
.
2.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
3.
Yong
,
Y.
,
Moheimani
,
S.
,
Kenton
,
B. J.
, and
Leang
,
K.
,
2012
, “
Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
4.
Huang
,
H.
,
Zhao
,
H.
,
Mi
,
J.
,
Yang
,
J.
,
Wan
,
S.
,
Yang
,
Z.
,
Yan
,
J.
,
Ma
,
Z.
, and
Geng
,
C.
,
2011
, “
Experimental Research on a Modular Miniaturization Nanoindentation Device
,”
Rev. Sci. Instrum.
,
82
(
9
), p.
095101
.
5.
Marinello
,
F.
,
Carmignato
,
S.
,
Voltan
,
A.
,
De Chiffre
,
L.
, and
Savio
,
E.
,
2010
, “
Error Sources in Atomic Force Microscopy for Dimensional Measurements: Taxonomy and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030903
.
6.
Kashani
,
M. S.
, and
Madhavan
,
V.
,
2011
, “
Analysis and Correction of the Effect of Sample Tilt on Results of Nanoindentation
,”
Acta Mater.
,
59
(
3
), pp.
883
895
.
7.
Huang
,
H.
,
Zhao
,
H.
,
Shi
,
C.
, and
Zhang
,
L.
,
2013
, “
Using Residual Indent Morphology to Measure the Tilt Between the Triangular Pyramid Indenter and the Sample Surface
,”
Meas. Sci. Technol.
,
24
(
10
), p.
105602
.
8.
Huang
,
L.
,
Meyer
,
C.
, and
Prater
,
C.
,
2007
, “
Eliminating Lateral Forces During AFM Indentation
,”
J. Phys.: Conf. Ser.
,
61
, pp.
805
809
.
9.
Ren
,
J.
, and
Zou
,
Q.
,
2014
, “
A Control-Based Approach to Accurate Nanoindentation Quantification in Broadband Nanomechanical Measurement Using Scanning Probe Microscope
,”
IEEE Trans. Nanotechnol.
,
13
(
1
), pp.
46
54
.
10.
Kim
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
,
2004
, “
Development and Optimization of 3-D Bridge-Type Hinge Mechanisms
,”
Sens. Actuators, A
,
116
(
3
), pp.
530
538
.
11.
Hwang
,
D.
,
Byun
,
J.
,
Jeong
,
J.
, and
Lee
,
M. G.
,
2011
, “
Robust Design and Performance Verification of an In-Plane XYθ Micro-Positioning Stage
,”
IEEE Trans. Nanotechnol.
,
10
(
6
), pp.
1412
1423
.
12.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Modeling and Performance Evaluation of a Flexure-Based XY Parallel Micromanipulator
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2127
2152
.
13.
Polit
,
S.
, and
Dong
,
J.
,
2011
, “
Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
724
733
.
14.
Dibiasio
,
C. M.
, and
Hopkins
,
J. B.
,
2012
, “
Sensitivity of Freedom Spaces During Flexure Stage Design Via FACT
,”
Precis. Eng.
,
36
(
3
), pp.
494
499
.
15.
Kang
,
D.
, and
Gweon
,
D.
,
2013
, “
Analysis and Design of a Cartwheel-Type Flexure Hinge
,”
Precis. Eng.
,
37
(
1
), pp.
33
43
.
16.
Niaritsiry
,
T.-F.
,
Fazenda
,
N.
, and
Clavel
,
R.
,
2004
, “
Study of the Sources of Inaccuracy of a 3 DOF Flexure Hinge-Based Parallel Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA '04
), New Orleans, LA, Apr. 26–May 1, Vol.
4
, pp.
4091
4096
.
17.
Patil
,
C. B.
,
Sreenivasan
,
S.
, and
Longoria
,
R. G.
,
2008
, “
Analytical and Experimental Characterization of Parasitic Motion in Flexure-Based Selectively Compliant Precision Mechanisms
,”
ASME
Paper No. DETC2008-50111.
18.
Li
,
S.
, and
Yu
,
J.
,
2014
, “
Design Principle of High-Precision Flexure Mechanisms Based on Parasitic-Motion Compensation
,”
Chin. J. Mech. Eng.
,
27
(
4
), pp.
663
672
.
19.
Smith
,
S.
,
Chetwynd
,
D.
, and
Bowen
,
D.
,
1987
, “
Design and Assessment of Monolithic High Precision Translation Mechanisms
,”
J. Phys. E: Sci. Instrum.
,
20
(
8
), pp.
977
983
.
20.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools That Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Precis. Eng.
,
34
(
4
), pp.
767
776
.
21.
Patil
,
C. B.
,
Sreenivasan
,
S.
, and
Longoria
,
R. G.
,
2008
, “
Robust Design of Flexure Based Nano Precision Compliant Mechanisms With Application to Nano Imprint Lithography
,”
ASME
Paper No. DETC2008-50114.
22.
Patil
,
C. B.
,
Sreenivasan
,
S.
, and
Longoria
,
R. G.
,
2007
, “
Analytical Representation of Nanoscale Parasitic Motion in Flexure-Based One DOF Translation Mechanism
,”
22nd Annual Meeting of the American Society for Precision Engineering
(
ASPE 2007
), Dallas, TX, Oct. 14–19.
23.
Ryu
,
J. W.
, and
Gweon
,
D.-G.
,
1997
, “
Error Analysis of a Flexure Hinge Mechanism Induced by Machining Imperfection
,”
Precis. Eng.
,
21
(
2
), pp.
83
89
.
24.
Huh
,
J.
,
Kim
,
K.
,
Kang
,
D.
,
Gweon
,
D.
, and
Kwak
,
B.
,
2006
, “
Performance Evaluation of Precision Nanopositioning Devices Caused by Uncertainties Due to Tolerances Using Function Approximation Moment Method
,”
Rev. Sci. Instrum.
,
77
(
1
), p.
015103
.
25.
Valentini
,
P. P.
, and
Hashemi-Dehkordi
,
S.-M.
,
2013
, “
Effects of Dimensional Errors on Compliant Mechanisms Performance by Using Dynamic Splines
,”
Mech. Mach. Theory
,
70
, pp.
106
115
.
26.
Lobontiu
,
N.
,
Paine
,
J. S.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
346
352
.
27.
Chen
,
G.
,
Liu
,
X.
, and
Du
,
Y.
,
2011
, “
Elliptical-Arc-Fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081002
.
28.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Closed-Form Compliance Equations of Filleted V-Shaped Flexure Hinges for Compliant Mechanism Design
,”
Precis. Eng.
,
34
(
3
), pp.
408
418
.
29.
Zhu
,
Z.
,
Zhou
,
X.
,
Wang
,
R.
, and
Liu
,
Q.
,
2015
, “
A Simple Compliance Modeling Method for Flexure Hinges
,”
Sci. China: Technol. Sci.
,
58
(
1
), pp.
56
63
.
30.
Wang
,
R.
,
Zhou
,
X.
, and
Zhu
,
Z.
,
2013
, “
Development of a Novel Sort of Exponent-Sine-Shaped Flexure Hinges
,”
Rev. Sci. Instrum.
,
84
(
9
), p.
095008
.
31.
Cowper
,
G.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.
32.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
(
3
), pp.
268
274
.
33.
Zhu
,
Z.
,
Zhou
,
X.
,
Liu
,
Z.
,
Wang
,
R.
, and
Zhu
,
L.
,
2014
, “
Development of a Piezoelectrically Actuated Two-Degree-of-Freedom Fast Tool Servo With Decoupled Motions for Micro-/Nanomachining
,”
Precis. Eng.
,
38
(
4
), pp.
809
820
.
34.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2000
, “
Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2000
), Takamatsu, Japan, Oct. 31–Nov. 5, Vol.
1
, pp.
786
792
.
35.
Tang
,
H.
, and
Li
,
Y.
,
2013
, “
Design, Analysis, and Test of a Novel 2-DOF Nanopositioning System Driven by Dual Mode
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
650
662
.
36.
Meijaard
,
J.
,
2011
, “
Refinements of Classical Beam Theory for Beams With a Large Aspect Ratio of Their Cross-Sections
,”
IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments
, Budapest, Hungary, June 7–11, pp.
285
292
.
37.
Brouwer
,
D.
,
Meijaard
,
J.
, and
Jonker
,
J.
,
2013
, “
Large Deflection Stiffness Analysis of Parallel Prismatic Leaf-Spring Flexures
,”
Precis. Eng.
,
37
(
3
), pp.
505
521
.
38.
Zhu
,
Z.
,
Zhou
,
X.
,
Liu
,
Q.
, and
Zhao
,
S.
,
2011
, “
Multi-Objective Optimum Design of Fast Tool Servo Based on Improved Differential Evolution Algorithm
,”
J. Mech. Sci. Technol.
,
25
(
12
), pp.
3141
3149
.
You do not currently have access to this content.