The purpose of this paper is to introduce a new kind of microarchitectured material that utilizes active control to alter its bulk shape through the deformation of its compliant elements. This new kind of microarchitectured material achieves its reconfigurable shape capabilities through a new control strategy that utilizes linearity and closed-form analytical tools to rapidly calculate the optimal internal actuation effort necessary to achieve a desired bulk surface profile. The kind of microarchitectured materials introduced in this paper is best suited for high-precision applications that would benefit from materials that can be programed to rapidly alter their surface or shape by small repeatable amounts in a controlled manner. Examples include distortion-correcting surfaces on which precision optics are mounted, airplane wings that deform to increase maneuverability and fuel efficiency, and surfaces that rapidly reconfigure to alter their texture. In this paper, the principles are provided for optimally designing 2D or 3D versions of the new kind of microarchitectured material such that they exhibit desired material property directionality. The mathematical theory is provided for modeling and calculating the actuation effort necessary to drive these materials such that their lattice shape comes closest to achieving a desired profile. Case studies are provided to demonstrate the utility of this theory and finite-element analysis (FEA) is used to verify the results.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids
,
Cambridge University Press
,
Cambridge, NY
.
2.
Bauer
,
J.
,
Hengsbach
,
S.
,
Tesari
,
I.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2014
, “
High-Strength Cellular Ceramic Composites With 3D Microarchitecture
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
7
), pp.
2453
2458
.
3.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
.
4.
Dong
,
J.
, and
Ferreira
,
P. M.
,
2008
, “
Simultaneous Actuation and Displacement Sensing for Electrostatic Drives
,”
J. Micromech. Microeng.
,
18
(
3
), pp.
35011
35020
.
5.
Fozdar
,
D. Y.
,
Soman
,
P.
,
Lee
,
J. W.
,
Han
,
L. H.
, and
Chen
,
S.
,
2011
, “
Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio
,”
Adv. Funct. Mater.
,
21
(
14
), pp.
2712
2720
.
6.
Heo
,
H.
,
Ju
,
J.
, and
Kim
,
D. M.
,
2013
, “
Compliant Cellular Structures: Application to a Passive Morphing Airfoil
,”
Compos. Struct.
,
106
, pp.
560
569
.
7.
Bassik
,
N.
,
Stern
,
G. M.
,
Jamal
,
M.
, and
Gracias
,
D. H.
,
2008
, “
Patterning Thin Film Mechanical Properties to Drive Assembly of Complex 3D Structures
,”
Adv. Mater.
,
20
(
24
), pp.
4760
4764
.
8.
Lochmatter
,
P.
, and
Kovacs
,
G.
,
2008
, “
Design and Characterization of an Actively Deformable Shell Structure Composed of Interlinked Active Hinge Segments Driven by Soft Dielectric EAPs
,”
Sens. Actuators A
,
141
(
2
), pp.
588
597
.
9.
Goldstein
,
S. C.
,
Campbell
,
J. D.
, and
Mowry
,
T. C.
,
2005
, “
Programmable Matter
,”
Computer
,
38
(
6
), pp.
99
101
.
10.
Zakin
,
M.
,
2008
, “
Programmable Matter—The Next Revolution in Materials
,”
Mil. Technol.
,
32
(
5
), pp.
98
100
.
11.
Rus
,
D.
, and
Vona
,
M.
,
1999
, “
Self-Reconfiguration Planning With Compressible Unit Modules
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, Vol.
4
, pp.
2513
2520
.
12.
Suh
,
J. W.
,
Homans
,
S. B.
, and
Yim
,
M. H.
,
2002
, “
Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
), Washington, DC, May 11–15, Vol.
4
, pp.
4095
4101
.
13.
Vassilvitskii
,
S.
,
Kubica
,
J.
,
Rieffel
,
E.
,
Yim
,
M. H.
, and
Suh
,
J. W.
,
2002
, “
On the General Reconfiguration Problem for Expanding Cube Style Modular Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
), Washington, DC, May 11–15, Vol.
1
, pp.
801
808
.
14.
White
,
P. J.
, and
Yim
,
M.
,
2007
, “
Scalable Modular Self-Reconfigurable Robots Using External Actuation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2007
), San Diego, CA, Oct. 29–Nov. 2, pp.
2773
2778
.
15.
Murata
,
S.
,
Kurokawa
,
H.
,
Yoshida
,
E.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
1998
, “
A 3-D Self-Reconfigurable Structure
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol.
1
, pp.
432
439
.
16.
Bishop
,
J.
,
Burden
,
S.
,
Klavins
,
E.
,
Kreisberg
,
R.
,
Malone
,
W.
,
Napp
,
N.
, and
Nguyen
,
T.
,
2005
, “
Programmable Parts: A Demonstration of the Grammatical Approach to Self-Organization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2005
), Edmonton, AB, Canada, Aug. 2–6, pp.
3684
3691
.
17.
White
,
P.
,
Zykov
,
V.
,
Bongard
,
J.
, and
Lipson
,
H.
,
2005
, “
Three Dimensional Stochastic Reconfiguration of Modular Robots
,”
Robotics: Science and Systems Conference
(
RSS I
), Cambridge, MA, June 8–11, pp.
161
168
.
18.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), pp.
12441
12445
.
19.
Gilpin
,
K.
,
Knaian
,
A.
, and
Rus
,
D.
,
2010
, “
Robot Pebbles: One Centimeter Modules for Programmable Matter Through Self-Disassembly
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
2485
2492
.
20.
White
,
P. J.
,
Revzen
,
S.
,
Thorne
,
C. E.
, and
Yim
,
M.
,
2011
, “
A General Stiffness Model for Programmable Matter and Modular Robotic Structures
,”
Robotica
,
29
(
1
), pp.
103
121
.
21.
Şahin
,
E.
,
2005
, “
Swarm Robotics: From Sources of Inspiration to Domains of Application
,”
Swarm Robotics
,
Springer
,
Berlin
, pp.
10
20
.
22.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1995
, “
Anisotropic Symmetries of Linear Elasticity
,”
ASME Appl. Mech. Rev.
,
48
(
5
), pp.
247
285
.
23.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
The University Press
,
Cambridge, UK
.
24.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
.
You do not currently have access to this content.