Modeling folding surfaces with nonzero thickness is of practical interest for mechanical engineering. There are many existing approaches that account for material thickness in folding applications. We propose a new systematic and broadly applicable algorithm to transform certain flat-foldable crease patterns into new crease patterns with similar folded structure but with a facet-separated folded state. We provide conditions on input crease patterns for the algorithm to produce a thickened crease pattern avoiding local self-intersection, and provide bounds for the maximum thickness that the algorithm can produce for a given input. We demonstrate these results in parameterized numerical simulations and physical models.
Issue Section:
Research Papers
References
1.
Tachi
, T.
, 2011
, “Rigid-Foldable Thick Origami
,” Origami 5
, A.K. Peters
, Natick, MA
, pp. 253
–264
.2.
Schenk
, M.
, Kerr
, S.
, Smyth
, A.
, and Guest
, S.
, 2013
, “Inflatable Cylinders for Deployable Space Structures
,” 1st International Conference Transformables
.3.
Balkcom
, D.
, 2002
, “Robotic Origami Folding
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.4.
Arora
, W. J.
, In
, H. J.
, Buchner
, T.
, Yang
, S.
, Smith
, H. I.
, and Barbastathis
, G.
, 2006
, “Nanostructured Origami 3d Fabrication and Self Assembly Process for Soldier Combat Systems
,” Sel. Top. Electron. Syst.
, 42
, pp. 473
–477
.5.
Huffman
, D.
, 1976
, “Curvature and Creases: A Primer on Paper
,” IEEE Trans. Comput.
, 25
(10
), pp. 1010
–1019
.6.
Miura
, K.
, 1989
, “A Note on Intrinsic Geometry of Origami
,” First International Meeting of Origami Science and Technology
, Ferrara, Italy, Dec. 6–7.7.
Tachi
, T.
, 2009
, “Simulation of Rigid Origami
,” Origami 4
, A.K. Peters
, Natick, MA
, pp. 175
–187
.8.
Hoberman
, C.
, 2010
, “Folding Structures Made of Thick Hinged Sheets
,” U.S. Patent No. 7,794,019.9.
Chen
, Y.
, Peng
, R.
, and You
, Z.
, 2015
, “Origami of Thick Panels
,” Science
, 349
(6246
), pp. 396
–400
.10.
Edmondson
, B. J.
, Lang
, R. J.
, Magleby
, S. P.
, and Howell
, L. L.
, 2014
, “An Offset Panel Technique for Rigidly Foldable Origami
,” ASME
Paper No. DETC2014-35606.11.
Zirbel
, S. A.
, Lang
, R. J.
, Thomson
, M. W.
, Sigel
, D. A.
, Walkemeyer
, P. E.
, Trease
, B. P.
, Magleby
, S. P.
, and Howell
, L. L.
, 2013
, “Accommodating Thickness in Origami-Based Deployable Arrays
,” ASME J. Mech. Des.
, 135
(11
), p. 111005
.12.
Hoberman
, C.
, 1991
, “Reversibly Expandable Structures
,” U.S. Patent No. 4,981,732.13.
Trautz
, M.
, and Kunstler
, A.
, 2010
, “Deployable Folded Plate Structures-Folding Patterns Based on 4-Fold-Mechanism Using Stiff Plates
,” Symposium of the International Association for Shell and Spatial Structures
(IASS
), Valencia, Spain, Sept. 28–Oct. 2, 2009, pp. 2306
–2317
.14.
Lang
, R. J.
, and Demaine
, E. D.
, 2006
, “Facet Ordering and Crease Assignment in Uniaxial Bases
,” Origami 4: Proceedings of the 4th International Meeting of Origami Science, Math, and Education (OSME 2006)
, Pasadena, CA
, Sept. 8–10, A. K. Peters, Ltd.
, Natick, MA
pp. 189
–205
.15.
Umesato
, T.
, Saitoh
, T.
, Uehara
, R.
, and Ito
, H.
, 2011
, “Complexity of the Stamp Folding Problem
,” Combinatorial Optimization and Applications
, Springer
, Berlin
, pp. 311
–321
.16.
Demaine
, E. D.
, Eppstein
, D.
, Hesterberg
, A.
, Ito
, H.
, Lubiw
, A.
, Uehara
, R.
, and Uno
, Y.
, 2015
, “Folding a Paper Strip to Minimize Thickness
,” WALCOM: Algorithms and Computation: 9th International Workshop, WALCOM 2015 (Lecture Notes in Computer Science), Vol. 8973
, Springer, Cham
, Switzerland
, pp. 113
–124
.17.
Copyright © 2016 by ASME
You do not currently have access to this content.