Flapping wing aerial vehicles (FWAVs) may require charging in the field where electrical power supply is not available. Flexible solar cells can be integrated into wings, tail, and body of FWAVs to harvest solar energy. The harvested solar energy can be used to recharge batteries and eliminate the need for external electrical power. It can also be used to increase the flight time of the vehicle by supplementing the battery power. The integration of solar cells in wings has been found to alter flight performance because solar cells have significantly different mechanical and density characteristics compared to other materials used for the FWAV construction. Previously, solar cells had been successfully integrated into the wings of Robo Raven, a FWAV developed at the University of Maryland. Despite changes in the aerodynamic forces, the vehicle was able to maintain flight and an overall increase in flight time was achieved. This paper investigates ways to redesign Robo Raven to significantly increase the wing area and incorporate solar cells into the wings, tail, and body. Increasing wing area allows for additional solar cells to be integrated, but there are tradeoffs due to the torque limitations of the servomotors used to actuate the wings as well changes in the lift and thrust forces that affect payload capacity. These effects were modeled and systematically characterized as a function of the wing area to determine the impact on enhancing flight endurance. In addition, solar cells were integrated into the body and the tail. The new design of Robo Raven generated a total of 64% more power using on-board solar cells, and increased flight time by 46% over the previous design. They were also able to recharge batteries at a similar rate to commercial chargers.

References

1.
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Wilkerson
,
S.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021003
.
2.
Tice
,
B. P.
,
1991
, “
Unmanned Aerial Vehicles—The Force Multiplier of the 1990s
,”
Airpower J.
,
5
(
1
), pp.
41
54
.
3.
Kumar
,
V.
, and
Michael
,
N.
,
2012
, “
Opportunities and Challenges With Autonomous Micro Aerial Vehicles
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1279
1291
.
4.
Pines
,
D. J.
, and
Bohorquez
,
F.
,
2006
, “
Challenges Facing Future Micro-Air-Vehicle Development
,”
J. Aircr.
,
43
(
2
), pp.
290
305
.
5.
Sane
,
S. P.
, and
Dickinson
,
M. H.
,
2002
, “
The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight
,”
J. Exp. Biol.
,
205
(
8
), pp.
1087
1096
.
6.
de Croon
,
G. C. H. E.
,
de Clerq
,
K. M. E.
,
Ruijsink
,
R.
,
Remes
,
B.
, and
de Wagter
,
C.
,
2009
, “
Design, Aerodynamics, and Vision-Based Control of the Delfly
,”
Int. J. Micro Air Veh.
,
1
(
2
), pp.
71
97
.
7.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
AIAA
Paper No. 2012-0588.
8.
Arabagi
,
V.
,
Hines
,
L.
, and
Sitti
,
M.
,
2012
, “
Design and Manufacturing of a Controllable Miniature Flapping Wing Robotic Platform
,”
Int. J. Rob. Res.
,
31
(
6
), pp.
785
800
.
9.
Cox
,
A.
,
Monopoli
,
D.
,
Cveticanin
,
D.
,
Goldfarb
,
M.
, and
Garcia
,
E.
,
2002
, “
The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles
,”
J. Intell. Mater. Syst. Struct.
,
13
(
9
), pp.
611
615
.
10.
Fenelon
,
M. A. A.
, and
Furukawa
,
T.
,
2009
, “
Design of an Active Flapping Wing Mechanism and a Micro Aerial Vehicle Using a Rotary Actuator
,”
Mech. Mach. Theory
,
45
(
2
), pp.
137
146
.
11.
Pornsin-Sirirak
,
T.
,
Tai
,
Y.
,
Ho
,
C.
, and
Keennon
,
M.
,
2001
, “
Microbat: A Palm-Sized Electrically Powered Ornithopter
,”
NASA/JPL
Workshop on Biomorphic Robotics
,
Pasadena, CA
, Aug. 14–17.
12.
Gerdes
,
J.
,
Holness
,
A.
,
Perez-Rosado
,
A.
,
Roberts
,
L.
,
Greisinger
,
A. J. G.
,
Barnett
,
E.
,
Kempny
,
J.
,
Lingam
,
D.
,
Yeh
,
C. H.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Robo Raven: A Flapping Wing Air Vehicle With Highly Compliant and Independently Controlled Wings
,”
Soft Rob.
,
1
(
4
), pp.
275
288
.
13.
Perez-Rosado
,
A.
,
Griesinger
,
A. J. G.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Performance Characterization of Multifunctional Wings With Integrated Solar Cells for Miniature Air Vehicles
,”
ASME
Paper No. DETC2014-34719.
14.
Perez-Rosado
,
A.
,
Gehlhar
,
R. D.
,
Nolen
,
S.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2015
, “
Design, Fabrication, and Characterization of Multifunctional Wings to Harvest Solar Energy in Flapping Wing Air Vehicles
,”
Smart Mater. Struct.
,
24
(
6
), p.
065042
.
15.
Gerdes
,
J. W.
,
Cellon
,
K. C.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2013
, “
Characterization of the Mechanics of Compliant Wing Designs for Flapping-wing Miniature Air Vehicles
,”
Exp. Mech.
,
53
(
9
), pp.
1561
1571
.
16.
Gerdes
,
J.
,
Bruck
,
H.
, and
Gupta
,
S. K.
,
2015
, “
A Systematic Exploration of Wing Size on Flapping Wing Air Vehicle Performance
,”
ASME
Paper No. DETC2015-47316.
17.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L.
,
2003
, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature
,
425
(
6959
), pp.
707
711
.
18.
Polhamus
,
E. C.
,
1966
, “
A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy
,” NASA Langley Research Center; Hampton, VA,
NASA
Paper No. TN D-3767.
19.
Wu
,
P.
,
Ifju
,
P.
, and
Stanford
,
B.
,
2010
, “
Flapping Wing Structural Deformation and Thrust Correlation Study With Flexible Membrane Wings
,”
AIAA J.
,
48
(
9
), pp.
2111
2122
.
20.
Mueller
,
D.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2010
, “
Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing Air Micro Air Vehicles Using a New Test Stand Design
,”
Exp. Mech.
,
50
(
6
), pp.
725
735
.
21.
Bauhuis
,
G. J.
,
Mulder
,
P.
,
Haverkamp
,
E. J.
,
Huijben
,
J. C. C. M.
, and
Schermer
,
J. J.
,
2009
, “
26.1% Thin-Film GaAs Solar Cell Using Epitaxial Lift-Off
,”
Sol. Energy Mater. Sol. Cells
,
93
(
9
), pp.
1488
1491
.
22.
Lin
,
Q.
,
Huang
,
H.
,
Jin
,
Y.
,
Fu
,
H.
,
Chang
,
P.
,
Li
,
D.
,
Yao
,
Y.
, and
Fan
,
Z.
,
2014
, “
Flexible Photovoltaic Technologies
,”
J. Mater. Chem. C
,
2
(
7
), pp.
1233
1247
.
23.
Zhao
,
L.
,
Huang
,
Q.
,
Deng
,
X.
, and
Sane
,
S.
,
2009
, “
Aerodynamic Effects of Flexibility in Flapping Wings
,”
J R Soc. Interface
,
12
(
13
), pp.
485
497
.
24.
Hsu
,
C. K.
,
Evans
,
J.
,
Vytla
,
S.
, and
Huang
,
P.
,
2010
, “
Development of Flapping Wing Micro Air Vehicles—Design, CFD, Experiment and Actual Flight
,”
AIAA
Paper No. 2010-1018.
25.
Yan
,
J.
,
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sitti
,
M.
, and
Fearing
,
R. S.
,
2001
, “
Towards Flapping Wing Control for a Micromechanical Flying Insect
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3901
3908
.
26.
Bejgerowski
,
W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2009
, “
A Systematic Approach for Designing Multifunctional Thermally Conducting Polymer Structures With Embedded Actuators
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111009
.
27.
Beigerowski
,
W.
,
Gerdes
,
J.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Wilkerson
,
S.
,
2010
, “
Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles
,”
ASME
Paper No. DETC2010-28519.
28.
Wissman
,
J.
,
Perez-Rosado
,
A.
,
Edgerton
,
A.
,
Levi
,
B. M.
,
Karakas
,
Z. N.
,
Kujawski
,
M.
,
Phillips
,
A.
,
Papavizas
,
N.
,
Fallon
,
D.
,
Bruck
,
H. A.
, and
Smela
,
E.
,
2013
, “
New Compliant Strain Gauges for Self-Sensing Dynamic Deformation of Flapping Wings on Miniature Air Vehicles
,”
Smart Mater. Struct.
,
22
(
8
), p.
085031
.
29.
Muijres
,
F. T.
,
Johansson
,
L. C.
,
Barfield
,
R.
,
Wolf
,
M.
,
Spedding
,
G. R.
, and
Hedenstrom
,
A.
,
2008
, “
Leading-Edge Vortex Improves Lift in Slow-Flying Bats
,”
Science
,
319
(
5867
), pp.
1250
1253
.
30.
Mueller
,
T. J.
,
2001
,
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
31.
Yang
,
L. J.
,
Hsu
,
C. K.
,
Ho
,
J. Y.
, and
Feng
,
C. K.
,
2007
, “
Flapping Wings With PVDF Sensors to Modify the Aerodynamic Forces of a Micro Aerial Vehicle
,”
Sens. Actuators A
,
139
(
1
), pp.
95
103
.
32.
Hsu
,
C. K.
,
Ho
,
J. Y.
,
Feng
,
G. H.
,
Shih
,
H. M.
, and
Yang
,
L. J.
,
2006
, “
A Flapping MAV With PVDF-Parylene Composite Skin
,”
Asia-Pacific Conference of Transducers and Micro-Nano Technology
(
APCOT-2006
), Singapore, June 25–28.
33.
Tsai
,
B. J.
, and
Fu
,
Y. C.
,
2009
, “
Design and Aerodynamic Analysis of a Flapping-Wing Micro Aerial Vehicle
,”
Aerosp. Sci. Technol.
,
13
(
7
), pp.
383
392
.
34.
Jones
,
K. D.
,
Bradshaw
,
C. J.
,
Papadopoulos
,
J.
, and
Platzer
,
M. F.
,
2004
, “
Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles
,”
AIAA
Paper No. 2004-399.
35.
Zdunich
,
P.
,
Bilyk
,
D.
,
MacMaster
,
M.
,
Loewen
,
D.
,
DeLaurier
,
J.
,
Kornbluh
,
R.
,
Low
,
T.
,
Stanford
,
S.
, and
Holeman
,
D.
,
2007
, “
Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle
,”
J. Aircr.
,
44
(
5
), pp.
1701
1711
.
36.
Madangopal
,
R.
,
Khan
,
Z.
, and
Agrawal
,
S.
,
2005
, “
Biologically Inspired Design of Small Flapping Wing Bird Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
37.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive-Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
.
38.
Mueller
,
D.
,
Gerdes
,
J. W.
, and
Gupta
,
S. K.
,
2009
, “
Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles
,”
ASME
Paper No. DETC2009-87543.
39.
Holness
,
A.
,
Bruck
,
H.
, and
Gupta
,
S. K.
,
2015
, “
Design of Propeller-Assisted Flapping Wing Air Vehicles for Enhanced Aerodynamic Performance
,”
ASME
Paper No. DETC2015-47577.
40.
Nemat-Nasser
,
S.
,
Plaistead
,
T.
,
Starr
,
A.
, and
Amirkhizi
,
A.
,
2005
, “
Multifunctional Materials
,”
Biomimetics: Biologically Inspired Technologies
,
Y.
Bar-Cohen
, ed.,
CRC Press
,
New York
.
41.
Thomas
,
J. P.
, and
Qidwai
,
M. A.
,
2005
, “
The Design and Application of Multifunctional Structure-Battery Materials Systems
,”
JOM J. Miner., Met. Mater. Soc.
,
57
(
3
), pp.
18
24
.
42.
Ma
,
K. Y.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
, and
Wood
,
R. J.
,
2013
, “
Controlled Flight of a Biologically Inspired, Insect-Scale Robot
,”
Science
,
340
(
6132
), pp.
603
607
.
43.
Thomas
,
J. P.
,
Qidwai
,
M. A.
,
Matic
,
P.
, and
Everett
,
R. K.
,
2005
, “
Multifunctional Structure-Plus-Power Concepts
,”
AIAA
Paper No. 2002-1239.
44.
Roberts
,
L.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2014
, “
Autonomous Loitering Control for a Flapping Wing Aerial Vehicle With Independent Wing Control
,”
ASME
Paper No. DETC2014-34752.
45.
Gerdes
,
J.
,
Roberts
,
L.
,
Barrnett
,
E.
,
Kempny
,
J.
,
Perez-Rosado
,
A.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2013
, “
Wing Performance Characterization for Flapping Wing Air Vehicles
,”
ASME
Paper No. DETC2013-12479.
46.
Perez-Rosado
,
A.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2015
, “
Enhancing the Design of Solar-Powered Flapping Wing Air Vehicles Using Multifunctional Structural Components
,”
ASME
Paper No. DETC2015-47570.
47.
Mahjoubi
,
H.
, and
Byl
,
K.
,
2013
, “
Trajectory Tracking in the Sagittal Plane: Decoupled Lift/Thrust Control Via Tunable Impedance Approach in Flapping-Wing MAVs
,”
American Control Conference
(
ACC
),
Washington, DC
, June 17–19, pp.
4951
4956
.
You do not currently have access to this content.