This paper presents a five degrees-of-freedom (DoF) low inertia shoulder exoskeleton. This device is comprised of two novel technologies. The first is 3DoF spherical parallel manipulator (SPM), which was developed using a new method of parallel manipulator design. This method involves mechanically coupling certain DoF of each independently actuated linkage of the parallel manipulator in order to constrain the kinematics of the entire system. The second is a 2DoF passive slip interface used to couple the user upper arm to the SPM. This slip interface increases system mobility and prevents joint misalignment caused by the translational motion of the user's glenohumeral joint from introducing mechanical interference. An experiment to validate the kinematics of the SPM was performed using motion capture. The results of this experiment validated the SPM's forward and inverse kinematic solutions through an Euler angle comparison of the actual and command orientations. A computational slip model was created to quantify the passive slip interface response for different conditions of joint misalignment. In addition to offering a low inertia solution for the rehabilitation or augmentation of the human shoulder, this device demonstrates a new method of motion coupling, which can be used to impose kinematic constraints on a wide variety of parallel architectures. Furthermore, the presented device demonstrates a passive slip interface that can be used with either parallel or serial robotic systems.

References

1.
Merlet
,
J.-P.
,
2012
,
Parallel Robots
, Vol.
74
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
2.
Taghirad
,
H. D.
,
2013
,
Parallel Robots: Mechanics and Control
,
CRC Press
, Boca Raton, FL.
3.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots
,
Springer
, Dordrecht, The Netherlands.
4.
Khatib
,
O.
,
1988
, “
Augmented Object and Reduced Effective Inertia in Robot Systems
,”
American Control Conference
,
IEEE
, Atlanta, GA, June 15–17, pp.
2140
2147
.
5.
Gupta
,
A.
,
O'Malley
,
M. K.
,
Patoglu
,
V.
, and
Burgar
,
C.
,
2008
, “
Design, Control and Performance of Ricewrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
233
251
.
6.
Roy
,
A.
,
Krebs
,
H. I.
,
Patterson
,
S. L.
,
Judkins
,
T. N.
,
Khanna
,
I.
,
Forrester
,
L. W.
,
Macko
,
R. M.
, and
Hogan
,
N.
,
2007
, “
Measurement of Human Ankle Stiffness Using the Anklebot
,”
IEEE 10th International Conference on Rehabilitation Robotics
,
ICORR 2007
, IEEE, Noordwijk, The Netherlands, June 13–15, pp.
356
363
.
7.
Klein
,
J.
,
Spencer
,
S.
,
Allington
,
J.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2010
, “
Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
710
715
.
8.
Veeger
,
H.
,
2000
, “
The Position of the Rotation Center of the Glenohumeral Joint
,”
J. Biomech.
,
33
(
12
), pp.
1711
1715
.
9.
Harryman
,
D. T.
,
Sidles
,
J.
,
Clark
,
J. M.
,
McQuade
,
K. J.
,
Gibb
,
T. D.
, and
Matsen
,
F. A.
,
1990
, “
Translation of the Humeral Head on the Glenoid With Passive Glenohumeral Motion
,”
J. Bone Jt. Surg. Am.
,
72
(
9
), pp.
1334
1343
.
10.
Haninger
,
K.
,
Lu
,
J.
,
Chen
,
W.
, and
Tomizuka
,
M.
,
2014
, “
Kinematic Design and Analysis for a Macaque Upper-Limb Exoskeleton With Shoulder Joint Alignment
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
478
483
.
11.
Carignan
,
C.
,
Liszka
,
M.
, and
Roderick
,
S.
,
2005
, “
Design of an Arm Exoskeleton With Scapula Motion for Shoulder Rehabilitation
,”
12th International Conference on Advanced Robotics
,
ICAR’05
, IEEE, Seattle, WA, July 18–20, pp.
524
531
.
12.
Jung
,
Y.
, and
Bae
,
J.
,
2014
, “
Performance Verification of a Kinematic Prototype 5-DOF Upper-Limb Exoskeleton With a Tilted and Vertically Translating Shoulder Joint
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Besancon, France, July 8–11, pp.
263
268
.
13.
Mihelj
,
M.
,
Nef
,
T.
, and
Riener
,
R.
,
2007
, “
Armin II-7 DOF Rehabilitation Robot: Mechanics and Kinematics
,” 2007
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
4120
4125
.
14.
Schiele
,
A.
, and
Visentin
,
G.
,
2003
, “
The ESA Human Arm Exoskeleton for Space Robotics Telepresence
,”
7th International Symposium on Artificial Intelligence, Robotics and Automation in Space
, Nara, Japan, May 19–23, pp.
19
23
.
15.
Gao
,
X.-S.
,
Lei
,
D.
,
Liao
,
Q.
, and
Zhang
,
G.-F.
,
2005
, “
Generalized Stewart-Gough Platforms and Their Direct Kinematics
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
141
151
.
16.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2009
, “
Determination of the Maximal Singularity-Free Orientation Workspace for the Gough–Stewart Platform
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1281
1293
.
17.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
18.
Pons
,
J. L.
,
2010
, “
Rehabilitation Exoskeletal Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
29
(
3
), pp.
57
63
.
19.
Jarrassé
,
N.
, and
Morel
,
G.
,
2012
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
697
709
.
20.
Vitiello
,
N.
,
Lenzi
,
T.
,
Roccella
,
S.
,
De Rossi
,
S. M.
,
Cattin
,
E.
,
Giovacchini
,
F.
,
Vecchi
,
F.
, and
Carrozza
,
M.
,
2013
, “
Neuroexos: A Powered Elbow Exoskeleton for Physical Rehabilitation
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
220
235
.
21.
Cempini
,
M.
,
De Rossi
,
S. M.
,
Lenzi
,
T.
,
Vitiello
,
N.
, and
Carrozza
,
M.
,
2013
, “
Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
236
250
.
22.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2015
, “
Forward Kinematics Solution Distribution and Analytic Singularity-Free Workspace of Linear-Actuated Symmetrical Spherical Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041007
.
23.
Tao
,
Z.
, and
An
,
Q.
,
2013
, “
Interference Analysis and Workspace Optimization of 3-RRR Spherical Parallel Mechanism
,”
Mech. Mach. Theory
,
69
, pp.
62
72
.
24.
Di Gregorio
,
R.
,
2003
, “
Kinematics of the 3-UPU Wrist
,”
Mech. Mach. Theory
,
38
(
3
), pp.
253
263
.
25.
Saltaren
,
R. J.
,
Sabater
,
J. M.
,
Yime
,
E.
,
Azorin
,
J. M.
,
Aracil
,
R.
, and
Garcia
,
N.
,
2007
, “
Performance Evaluation of Spherical Parallel Platforms for Humanoid Robots
,”
Robotica
,
25
(
03
), pp.
257
267
.
26.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2009
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Contemp. Math.
,
496
, pp.
331
347
.
You do not currently have access to this content.