Coronary stents made from degradable biomaterials such as magnesium alloy are an emerging technology in the treatment of coronary artery disease. Biodegradable stents provide mechanical support to the artery during the initial scaffolding period after which the artery will have remodeled. The subsequent resorption of the stent biomaterial by the body has potential to reduce the risk associated with long-term placement of these devices, such as in-stent restenosis, late stent thrombosis, and fatigue fracture. Computational modeling such as finite-element analysis has proven to be an extremely useful tool in the continued design and development of these medical devices. What is lacking in computational modeling literature is the representation of the active response of the arterial tissue in the weeks and months following stent implantation, i.e., neointimal remodeling. The phenomenon of neointimal remodeling is particularly interesting and significant in the case of biodegradable stents, when both stent degradation and neointimal remodeling can occur simultaneously, presenting the possibility of a mechanical interaction and transfer of load between the degrading stent and the remodeling artery. In this paper, a computational modeling framework is developed that combines magnesium alloy degradation and neointimal remodeling, which is capable of simulating both uniform (best case) and localized pitting (realistic) stent corrosion in a remodeling artery. The framework is used to evaluate the effects of the neointima on the mechanics of the stent, when the stent is undergoing uniform or pitting corrosion, and to assess the effects of the neointimal formation rate relative to the overall stent degradation rate (for both uniform and pitting conditions).

References

1.
Waksman
,
R.
,
Prati
,
F.
,
Bruining
,
N.
,
Haude
,
M.
,
Böse
,
D.
,
Kitabata
,
H.
,
Erne
,
P.
,
Verheye
,
S.
,
Degen
,
H.
,
Vermeersch
,
P.
,
Di Vito
,
L.
,
Koolen
,
J.
, and
Erbel
,
R.
,
2013
, “
Serial Observation of Drug-Eluting Absorbable Metal Scaffold: Multi-Imaging Modality Assessment
,”
Circ. Cardiovasc. Interventions
,
6
(
6
), pp.
644
653
.
2.
Hermawan
,
H.
,
Dubé
,
D.
, and
Mantovani
,
D.
,
2010
, “
Developments in Metallic Biodegradable Stents
,”
Acta Biomater.
,
6
(
5
), pp.
1693
1697
.
3.
Gogas
,
B.
,
Farooq
,
V.
,
Onuma
,
Y.
, and
Serruys
,
P.
,
2012
, “
The Absorb Bioresorbable Vascular Scaffold: An Evolution or Revolution in Interventional Cardiology
,”
Hell. J. Cardiol.
,
53
(
4
), pp.
301
309
.
4.
Patel
,
N.
, and
Banning
,
A. P.
,
2013
, “
Bioabsorbable Scaffolds for the Treatment of Obstructive Coronary Artery Disease: The Next Revolution in Coronary Intervention?
Heart
,
99
(
17
), pp.
1236
1243
.
5.
Erbel
,
R.
,
Di Mario
,
C.
,
Bartunek
,
J.
,
Bonnier
,
J.
,
de Bruyne
,
B.
,
Eberli
,
F. R.
,
Erne
,
P.
,
Haude
,
M.
,
Heublein
,
B.
,
Horrigan
,
M.
,
Ilsley
,
C.
,
Böse
,
D.
,
Koolen
,
J.
,
Lüscher
,
T. F.
,
Weissman
,
N.
, and
Waksman
,
R.
,
2007
, “
Temporary Scaffolding of Coronary Arteries With Bioabsorbable Magnesium Stents: A Prospective, Non-Randomised Multicentre Trial
,”
Lancet
,
369
(
9576
), pp.
1869
1875
.
6.
Haude
,
M.
,
Erbel
,
R.
,
Erne
,
P.
,
Verheye
,
S.
,
Degen
,
H.
,
Bose
,
D.
,
Vermeersch
,
P.
,
Wijnbergen
,
I.
,
Weissman
,
N.
,
Prati
,
F.
,
Waksman
,
R.
, and
Koolen
,
J.
,
2013
, “
Safety and Performance of the Drug-Eluting Metal Scaffold (Dreams) in Patients With De-Novo Coronary Lesions: 12 Month Results of the Prospective, Multicentre, First-in-Man Biosolve-1 Trial
,”
Lancet
,
381
(
9869
), pp.
836
844
.
7.
Haude
,
M.
,
Ince
,
H.
,
Abizaid
,
A.
,
Toelg
,
R.
,
Lemos
,
P. A.
,
Von Birgelen
,
C.
,
Christiansen
,
E. H.
,
Wijns
,
W.
,
Neumann
,
F. J.
,
Kaiser
,
C.
,
Eeckhout
,
E.
,
Lim
,
S. T.
,
Escaned
,
J.
,
Garcia-Garcia
,
H. M.
, and
Waksman
,
R.
,
2016
, “
Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients With De-Novo Coronary Artery Lesions (Biosolve-II): 6 Month Results of a Prospective, Multicentre, Non-Randomised, First-in-Man Trial
,”
Lancet
,
387
(
10013
), pp.
31
39
.
8.
Mitra
,
A. K.
, and
Agrawal
,
D. K.
,
2006
, “
In Stent Restenosis: Bane of the Stent Era
,”
J. Clin. Pathol.
,
59
(
3
), pp.
232
239
.
9.
Ong
,
A. T. L.
,
McFadden
,
E. P.
,
Regar
,
E.
,
de Jaegere
,
P. P. T.
,
van Domburg
,
R. T.
, and
Serruys
,
P. W.
,
2005
, “
Late Angiographic Stent Thrombosis (Last) Events With Drug-Eluting Stents
,”
J. Am. Coll. Cardiol.
,
45
(
12
), pp.
2088
2092
.
10.
Zartner
,
P.
,
Cesnjevar
,
R.
,
Singer
,
H.
, and
Weyand
,
M.
,
2005
, “
First Successful Implantation of a Biodegradable Metal Stent Into the Left Pulmonary Artery of a Preterm Baby
,”
Catheterization Cardiovasc. Interventions
,
66
(
4
), pp.
590
594
.
11.
Conway
,
C.
,
Sharif
,
F.
,
McGarry
,
J. P.
, and
McHugh
,
P. E.
,
2012
, “
A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach
,”
Cardiovasc. Eng. Technol.
,
3
(
4
), pp.
374
387
.
12.
Conway
,
C.
,
McGarry
,
J. P.
, and
McHugh
,
P. E.
,
2014
, “
Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2425
2439
.
13.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2012
, “
Comparing Coronary Stent Material Performance on a Common Geometric Platform Through Simulated Bench Testing
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
129
138
.
14.
Gervaso
,
F.
,
Capelli
,
C.
,
Petrini
,
L.
,
Lattanzio
,
S.
,
Di Virgilio
,
L.
, and
Migliavacca
,
F.
,
2008
, “
On the Effects of Different Strategies in Modelling Balloon-Expandable Stenting by Means of Finite Element Method
,”
J. Biomech.
,
41
(
6
), pp.
1206
1212
.
15.
Gijsen
,
F. J. H.
,
Migliavacca
,
F.
,
Schievano
,
S.
,
Socci
,
L.
,
Petrini
,
L.
,
Thury
,
A.
,
Wentzel
,
J. J.
,
van der Steen
,
A. F. W.
,
Serruys
,
P. W. S.
, and
Dubini
,
G.
,
2008
, “
Simulation of Stent Deployment in a Realistic Human Coronary Artery
,”
Biomed. Eng. Online
,
7
(
1
), p.
23
.
16.
Sweeney
,
C. A.
,
McHugh
,
P. E.
,
McGarry
,
J. P.
, and
Leen
,
S. B.
,
2012
, “
Micromechanical Methodology for Fatigue in Cardiovascular Stents
,”
Int. J. Fatigue
,
44
, pp.
202
216
.
17.
Zunino
,
P.
,
D'Angelo
,
C.
,
Petrini
,
L.
,
Vergara
,
C.
,
Capelli
,
C.
, and
Migliavacca
,
F.
,
2009
, “
Numerical Simulation of Drug Eluting Coronary Stents: Mechanics, Fluid Dynamics and Drug Release
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3633
3644
.
18.
Martin
,
D.
, and
Boyle
,
F. J.
,
2011
, “
Computational Structural Modelling of Coronary Stent Deployment: A Review
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
4
), pp.
331
348
.
19.
Morlacchi
,
S.
, and
Migliavacca
,
F.
,
2013
, “
Modeling Stented Coronary Arteries: Where We Are, Where to Go
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1428
1444
.
20.
McHugh
,
P.
,
Barakat
,
A.
, and
McGinty
,
S.
,
2016
, “
Medical Stents: State of the Art and Future Directions
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
274
275
.
21.
Grogan
,
J. A.
,
O'Brien
,
B. J.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2011
, “
A Corrosion Model for Bioabsorbable Metallic Stents
,”
Acta Biomater.
,
7
(
9
), pp.
3523
3533
.
22.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2013
, “
Optimizing the Design of a Bioabsorbable Metal Stent Using Computer Simulation Methods
,”
Biomaterials
,
34
(
33
), pp.
8049
8060
.
23.
Soares
,
J. S.
,
Moore
,
J. E. J.
, and
Rajagopal
,
K. R.
,
2008
, “
Constitutive Framework for Biodegradable Polymers With Applications to Biodegradable Stents
,”
ASAIO J.
,
54
(
3
), pp.
295
301
.
24.
Bobel
,
A. C.
,
Petisco
,
S.
,
Sarasua
,
J. R.
,
Wang
,
W.
, and
McHugh
,
P. E.
,
2015
, “
Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent
,”
Cardiovasc. Eng. Technol.
,
6
(
4
), pp.
519
532
.
25.
Debusschere
,
N.
,
Segers
,
P.
,
Dubruel
,
P.
,
Verhegghe
,
B.
, and
De Beule
,
M.
,
2015
, “
A Finite Element Strategy to Investigate the Free Expansion Behaviour of a Biodegradable Polymeric Stent
,”
J. Biomech.
,
48
(
10
), pp.
2012
2018
.
26.
Wu
,
W.
,
Petrini
,
L.
,
Gastaldi
,
D.
,
Villa
,
T.
,
Vedani
,
M.
,
Lesma
,
E.
,
Previtali
,
B.
, and
Migliavacca
,
F.
,
2010
, “
Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents
,”
Ann. Biomed. Eng.
,
38
(
9
), pp.
2829
2840
.
27.
Wu
,
W.
,
Gastaldi
,
D.
,
Yang
,
K.
,
Tan
,
L.
,
Petrini
,
L.
, and
Migliavacca
,
F.
,
2011
, “
Finite Element Analyses for Design Evaluation of Biodegradable Magnesium Alloy Stents in Arterial Vessels
,”
Mater. Sci. Eng. B
,
176
(
20
), pp.
1733
1740
.
28.
Wu
,
W.
,
Chen
,
S.
,
Gastaldi
,
D.
,
Petrini
,
L.
,
Mantovani
,
D.
,
Yang
,
K.
,
Tan
,
L.
, and
Migliavacca
,
F.
,
2013
, “
Experimental Data Confirm Numerical Modeling of the Degradation Process of Magnesium Alloys Stents
,”
Acta Biomater.
,
9
(
10
), pp.
8730
8739
.
29.
Boland
,
E. L.
,
Shine
,
R.
,
Kelly
,
N.
,
Sweeney
,
C. A.
, and
McHugh
,
P. E.
,
2015
, “
A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
341
356
.
30.
Biotronik SE & Co. KG
,
2016
, “
Biotronik Announces CE Mark for Magmaris, the First Clinically-Proven Bioresorbable Magnesium Scaffold
,”
J. Invasive Cardiol.
, June 15, epub.
31.
Gastaldi
,
D.
,
Sassi
,
V.
,
Petrini
,
L.
,
Vedani
,
M.
,
Trasatti
,
S.
, and
Migliavacca
,
F.
,
2011
, “
Continuum Damage Model for Bioresorbable Magnesium Alloy Devices—Application to Coronary Stents
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
352
365
.
32.
Debusschere
,
N.
,
Segers
,
P.
,
Dubruel
,
P.
,
Verhegghe
,
B.
, and
De Beule
,
M.
,
2016
, “
A Computational Framework to Model Degradation of Biocorrodible Metal Stents Using an Implicit Finite Element Solver
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
382
390
.
33.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2014
, “
A Physical Corrosion Model for Bioabsorbable Metal Stents
,”
Acta Biomater.
,
10
(
5
), pp.
2313
2322
.
34.
Alvarez-Lopez
,
M.
, and
Pereda
,
M.
,
2010
, “
Corrosion Behaviour of AZ31 Magnesium Alloy With Different Grain Sizes in Simulated Biological Fluids
,”
Acta Biomater.
,
6
(
5
), pp.
1763
1771
.
35.
Witte
,
F.
,
Fischer
,
J.
,
Nellesen
,
J.
, and
Crostack
,
H.
,
2006
, “
In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys
,”
Biomaterials
,
27
(
7
), pp.
1013
1018
.
36.
Caiazzo
,
A.
,
Evans
,
D.
,
Falcone
,
J. L.
,
Hegewald
,
J.
,
Lorenz
,
E.
,
Stahl
,
B.
,
Wang
,
D.
,
Bernsdorf
,
J.
,
Chopard
,
B.
,
Gunn
,
J.
,
Hose
,
R.
,
Krafczyk
,
M.
,
Lawford
,
P.
,
Smallwood
,
R.
,
Walker
,
D.
, and
Hoekstra
,
A.
,
2011
, “
A Complex Automata Approach for In-Stent Restenosis: Two-Dimensional Multiscale Modelling and Simulations
,”
J. Comput. Sci.
,
2
(
1
), pp.
9
17
.
37.
Tahir
,
H.
,
Bona-Casas
,
C.
, and
Hoekstra
,
A. G.
,
2013
, “
Modelling the Effect of a Functional Endothelium on the Development of In-Stent Restenosis
,”
PLoS One
,
8
(
6
), p.
e66138
.
38.
Boyle
,
C. J.
,
Lennon
,
A. B.
, and
Prendergast
,
P. J.
,
2011
, “
In Silico Prediction of the Mechanobiological Response of Arterial Tissue: Application to Angioplasty and Stenting
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
81001
.
39.
Boyle
,
C. J.
,
Lennon
,
A. B.
,
Early
,
M.
,
Kelly
,
D. J.
,
Lally
,
C.
, and
Prendergast
,
P. J.
,
2010
, “
Computational Simulation Methodologies for Mechanobiological Modelling: A Cell-Centred Approach to Neointima Development in Stents
,”
Philos. Trans. R. Soc. A
,
368
(
1921
), pp.
2919
2935
.
40.
Zahedmanesh
,
H.
, and
Lally
,
C.
,
2012
, “
A Multiscale Mechanobiological Modelling Framework Using Agent-Based Models and Finite Element Analysis: Application to Vascular Tissue Engineering
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
363
377
.
41.
Hwang
,
M.
,
Garbey
,
M.
,
Berceli
,
S. A.
, and
Tran-Son-Tay
,
R.
,
2009
, “
Rule-Based Simulation of Multi-Cellular Biological Systems: A Review of Modeling Techniques
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
285
294
.
42.
Boyle
,
C. J.
,
Lennon
,
A. B.
, and
Prendergast
,
P. J.
,
2013
, “
Application of a Mechanobiological Simulation Technique to Stents Used Clinically
,”
J. Biomech.
,
46
(
5
), pp.
918
924
.
43.
Lacroix
,
D.
,
Prendergast
,
P. J.
,
Li
,
G.
, and
Marsh
,
D.
,
2002
, “
Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing
,”
Med. Biol. Eng. Comput.
,
40
(
1
), pp.
14
21
.
44.
Gómez-Benito
,
M. J.
,
García-Aznar
,
J. M.
,
Kuiper
,
J. H.
, and
Doblaré
,
M.
,
2005
, “
Influence of Fracture Gap Size on the Pattern of Long Bone Healing: A Computational Study
,”
J. Theor. Biol.
,
235
(
1
), pp.
105
119
.
45.
Burke
,
D. P.
, and
Kelly
,
D. J.
,
2012
, “
Substrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation During Skeletal Tissue Regeneration: A Mechanobiological Model
,”
PLoS One
,
7
(
7
), p.
e40737
.
46.
Lally
,
C.
, and
Prendergast
,
P. J.
,
2006
, “
Simulation of In-Stent Restenosis for the Design of Cardiovascular Stents
,”
Mechanics of Biological Tissue SE—18
,
G.
Holzapfel
and
R.
Ogden
, eds.,
Springer
,
Berlin
, pp.
255
267
.
47.
McHugh
,
P. E.
,
Grogan
,
J. A.
,
Conway
,
C.
, and
Boland
,
E. L.
,
2015
, “
Computational Modeling for Analysis and Design of Metallic Biodegradable Stents
,”
ASME J. Med. Devices
,
9
(3), p.
030946
.
48.
Boland
,
E. L.
,
Grogan
,
J. A.
,
Conway
,
C.
, and
Mchugh
,
P. E.
,
2016
, “
Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery
,”
JOM
,
68
(
4
), pp.
1198
1203
.
49.
Kitabata
,
H.
,
Waksman
,
R.
, and
Warnack
,
B.
,
2014
, “
Bioresorbable Metal Scaffold for Cardiovascular Application: Current Knowledge and Future Perspectives
,”
Cardiovasc. Revasc. Med.
,
15
(
2
), pp.
109
116
.
50.
Song
,
G. L.
, and
Atrens
,
A.
,
1999
, “
Corrosion Mechanisms of Magnesium Alloys
,”
Adv. Eng. Mater.
,
1
(
1
), pp.
11
33
.
51.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
52.
Wentzel
,
J. J.
,
Krams
,
R.
,
Schuurbiers
,
J. C.
,
Oomen
,
J. A.
,
Kloet
,
J.
,
van Der Giessen
,
W. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
,
2001
, “
Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries
,”
Circulation
,
103
(
13
), pp.
1740
1745
.
53.
Koskinas
,
K. C.
,
Chatzizisis
,
Y. S.
,
Antoniadis
,
A. P.
, and
Giannoglou
,
G. D.
,
2012
, “
Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis: Pathophysiologic Mechanisms and Implications for Clinical Translation
,”
J. Am. Coll. Cardiol.
,
59
(
15
), pp.
1337
1349
.
54.
Bourantas
,
C. V.
,
Papafaklis
,
M. I.
,
Kotsia
,
A.
,
Farooq
,
V.
,
Muramatsu
,
T.
,
Gomez-Lara
,
J.
,
Zhang
,
Y. J.
,
Iqbal
,
J.
,
Kalatzis
,
F. G.
,
Naka
,
K. K.
,
Fotiadis
,
D. I.
,
Dorange
,
C.
,
Wang
,
J.
,
Rapoza
,
R.
,
Garcia-Garcia
,
H. M.
,
Onuma
,
Y.
,
Michalis
,
L. K.
, and
Serruys
,
P. W.
,
2014
, “
Effect of the Endothelial Shear Stress Patterns on Neointimal Proliferation Following Drug-Eluting Bioresorbable Vascular Scaffold Implantation: An Optical Coherence Tomography Study
,”
JACC Cardiovasc. Interventions
,
7
(
3
), pp.
315
324
.
55.
Malek
,
A. M.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), p.
2035
.
56.
Hose
,
D. R.
,
Narracott
,
A. J.
,
Griffiths
,
B.
,
Mahmood
,
S.
,
Gunn
,
J.
,
Sweeney
,
D.
, and
Lawford
,
P. V.
,
2004
, “
A Thermal Analogy for Modelling Drug Elution From Cardiovascular Stents
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
5
), pp.
257
64
.
57.
Koric
,
S.
,
Hibbeler
,
L. C.
, and
Thomas
,
B. G.
,
2009
, “
Explicit Coupled Thermo-Mechanical Finite-Element Model of Continuous Casting of Steel in Funnel Molds
,”
Int. J. Numer. Methods Eng.
,
78
(
1
), pp.
1
31
.
58.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
59.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2006
, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
757
65
.
60.
Timmins
,
L. H.
,
Moreno
,
M. R.
,
Meyer
,
C. A.
,
Criscione
,
J. C.
,
Rachev
,
A.
, and
Moore
,
J. E.
,
2007
, “
Stented Artery Biomechanics and Device Design Optimization
,”
Med. Biol. Eng. Comput.
,
45
(
5
), pp.
505
513
.
61.
Zahedmanesh
,
H.
, and
Lally
,
C.
,
2009
, “
Determination of the Influence of Stent Strut Thickness Using the Finite Element Method: Implications for Vascular Injury and In-Stent Restenosis
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
385
393
.
62.
Zheng
,
Y. F.
,
Gu
,
X. N.
, and
Witte
,
F.
,
2014
, “
Biodegradable Metals
,”
Mater. Sci. Eng.
,
77
, pp.
1
34
.
63.
Bowen
,
P. K.
,
Gelbaugh
,
J. A.
,
Mercier
,
P. J.
,
Goldman
,
J.
, and
Drelich
,
J.
,
2012
, “
Tensile Testing as a Novel Method for Quantitatively Evaluating Bioabsorbable Material Degradation
,”
J. Biomed. Mater. Res. Part B
,
100
(
8
), pp.
2101
2113
.
You do not currently have access to this content.