Wide mesh or tape sutures are used to close high-tension wounds such as in hernia or tendon repair. However, wide sutures produce large knots that are susceptible to increased palpability, infection, and foreign body response. To prevent such adverse events, we developed a small suture anchor to replace wide suture knots. The suture anchor was iteratively developed using three-dimensional (3D) design software and produced via 3D printing. Anchor prototypes underwent monotonic, cyclic fatigue, and stress-life testing in a benchtop soft tissue suture model. Results were compared to a standard of care knot and alternative suture fixation devices. The final anchor design was selected based on minimal size and mechanical performance. The size of the final anchor (200 mm3) was 33% smaller than a tape suture knot and 68% smaller than a mesh suture knot. Monotonic testing of mesh and tape sutures revealed a significantly greater anchor failure load compared to knot and alternative fixations (p < 0.05). Additionally, all anchors successfully completed cyclic fatigue testing without failure while other fixations, including knot, failed to complete cyclic fatigue testing multiple times. Stress-life testing demonstrated durable anchor fixation under varying tensile stresses. Failure mode analysis revealed anchor fracture and tissue failure as modes of anchor failure, each of which occurred at supraphysiologic forces. We created a small suture anchor that significantly outperforms knot and alternative suture fixations in benchtop testing and addresses concerns of increased palpability, infection, and foreign body response from large suture knots.

References

1.
Gnandt
,
R. J.
,
Smith
,
J. L.
,
Nguyen-Ta
,
K.
,
McDonald
,
L.
, and
LeClere
,
L. E.
,
2016
, “
High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study
,”
Arthroscopy
,
32
(
2
), pp.
356
63
.
2.
Souza
,
J. M.
,
Dumanian
,
Z. P.
,
Gurjala
,
A. N.
, and
Dumanian
,
G. A.
,
2015
, “
In Vivo Evaluation of a Novel Mesh Suture Design for Abdominal Wall Closure
,”
Plast. Reconstr. Surg.
,
135
(
2
), pp.
322e
330e
.
3.
Dumanian
,
G. A.
,
Tulaimat
,
A.
, and
Dumanian
,
Z. P.
,
2015
, “
Experimental Study of the Characteristics of a Novel Mesh Suture
,”
Br. J. Surg.
,
102
(
10
), pp.
1285
1292
.
4.
Lanier
,
S. T.
,
Dumanian
,
G. A.
,
Jordan
,
S. W.
,
Miller
,
K. R.
,
Ali
,
N. A.
, and
Stock
,
S. R.
,
2016
, “
Mesh Sutured Repairs of Abdominal Wall Defects
,”
Plast. Reconstr. Surg. Global Open
,
4
(
9
), p.
e1060
.
5.
Smith
,
K. E.
,
Dupont
,
K. M.
,
Safranski
,
D. L.
,
Blair
,
J.
,
Buratti
,
D.
,
Zeetser
,
V.
,
Callahan
,
R.
,
Lin
,
J.
, and
Gall
,
K.
,
2017
, “
Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities
,”
Tech. Orthop.
,
31
(
3
), pp.
181
189
.
6.
van Rijssel
,
E. J.
,
Brand
,
R.
,
Admiraal
,
C.
,
Smit
,
I.
, and
Trimbos
,
J. B.
,
1989
, “
Tissue Reaction and Surgical Knots: The Effect of Suture Size, Knot Configuration, and Knot Volume
,”
Obstet. Gynecol.
,
74
(
1
), pp.
64
68
.
7.
Alexander
,
J. W.
,
Kaplan
,
J. Z.
, and
Altemeier
,
W. A.
,
1967
, “
Role of Suture Materials in the Development of Wound Infection
,”
Ann. Surg.
,
165
(
2
), pp.
192
199
.
8.
Masini
,
B. D.
,
Stinner
,
D. J.
,
Waterman
,
S. M.
, and
Wenke
,
J. C.
,
2011
, “
Bacterial Adherence to Suture Materials
,”
J. Surg. Educ.
,
68
(
2
), pp.
101
104
.
9.
Sparks
,
J. L.
,
Vavalle
,
N. A.
,
Kasting
,
K. E.
,
Long
,
B.
,
Tanaka
,
M. L.
,
Sanger
,
P. A.
,
Schnell
,
K.
, and
Conner-Kerr
,
T. A.
,
2015
, “
Use of Silicone Materials to Simulate Tissue Biomechanics as Related to Deep Tissue Injury
,”
Adv. Skin Wound Care
,
28
(
2
), pp.
59
68
.
10.
Shergold
,
O. A.
,
Fleck
,
N. A.
, and
Radford
,
D.
,
2006
, “
The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates
,”
Int. J. Impact Eng.
,
32
(
9
), pp.
1384
1402
.
11.
Brown
,
C. N.
, and
Finch
,
J. G.
,
2010
, “
Which Mesh for Hernia Repair?
,”
Ann. R. Coll. Surg. Engl.
,
92
(
4
), pp.
272
278
.
12.
Carbon
,
2017
, “
UMA 90: Technical Data Sheet
,” Carbon, Redwood City, CA, accessed Aug. 7, 2017, http://www.carbon3d.com/materials/uma-urethanemethacrylate
13.
Zhao
,
C.
,
Hsu
,
C. C.
,
Moriya
,
T.
,
Thoreson
,
A. R.
,
Cha
,
S. S.
,
Moran
,
S. L.
,
An
,
K. N.
, and
Amadio
,
P. C.
,
2013
, “
Beyond the Square Knot: A Novel Knotting Technique Surgical Use
,”
J. Bone Jt. Surg. Am.
,
95
(
11
), pp.
1020
1027
.
14.
Komatsu
,
F.
,
Mori
,
R.
, and
Uchio
,
Y.
,
2006
, “
Optimum Surgical Suture Material and Methods to Obtain High Tensile Strength at Knots: Problems of Conventional Knots and the Reinforcement Effect of Adhesive Agent
,”
J. Orthop. Sci.
,
11
(
1
), pp.
70
74
.
15.
Guerron
,
A. D.
,
Lee
,
H. J.
,
Yoo
,
J.
,
Seymour
,
K.
,
Sudan
,
R.
,
Portenier
,
D.
, and
Park
,
C.
,
2017
, “
Laparoscopic Single-Site Inguinal Hernia Repair Using a Self-Fixating Mesh
,”
JSLS
,
21
(
1
), p.
e2016
.
16.
Bard
,
2017
, “
OptiFix™ Open Absorbable Fixation System
,” Bard, Warwick, RI, accessed Aug. 7, 2017, https://www.crbard.com/davol/en-US/products/OptiFix-Open-Absorbable-Fixation-System
17.
Arthrex
,
2017
, “
Suture Anchors
,” Arthrex, Naples, FL, accessed Aug. 7, 2017, https://www.arthrex.com/hip/suture-anchors
18.
Liao
,
J. C.
,
Niu
,
C. C.
,
Chen
,
W. J.
, and
Chen
,
L. H.
,
2008
, “
Polyetheretherketone (PEEK) Cage Filled With Cancellous Allograft in Anterior Cervical Discectomy and Fusion
,”
Int. Orthop.
,
32
(
5
), pp.
643
648
.
You do not currently have access to this content.