Abstract

The needle insertion is widely used in many medical procedures, particularly in the needle biopsy. The cutting force occurred during the insertion process has a significant effect on the cutting outcome. This paper focuses on minimizing the cutting force for two conventional needle insertion methods, the nonrotational and rotational needle insertion. For the nonrotational needle insertion, the secondary bevel angle and angle of rotation, which are two used for grinding the back-bevel and lancet needles, are considered. For the rotational needles, the effects of the insertion speed and the slice-push ratio on the cutting force are investigated. Levels of these design variables are defined using practical needle design configurations found in the literature. A clear trend of the cutting force decreases as the increase of the inclination angle was observed. The optimal cutting force of nonrotational needles was found as 0.242 N with inclination angle of 69.25 deg for the lancet needle and 0.254 N with inclination angle of 66.24 deg for the back-bevel needle. The optimization of rotational needles yielded a configuration of slice-push ratio as 4.66 and insertion speed as 2.01, which resulted in a minimal cutting force of 0.22 N. Besides, the main effects of and the interaction between the design variables on the cutting force are obtained and discussed. These results provide essential information for selecting geometric and cutting speed parameters for the design of nonrotational and rotational needles.

References

1.
Wu
,
J. S.
,
Goldsmith
,
J. D.
,
Horwich
,
P. J.
,
Shetty
,
S. K.
, and
Hochman
,
M. G.
,
2008
, “
Bone and Soft-Tissue Lesions: What Factors Affect Diagnostic Yield of Image-Guided Core-Needle Biopsy?
,”
Radiology
,
248
(
3
), pp.
962
970
.10.1148/radiol.2483071742
2.
Ubhayakar
,
G. N.
,
Li
,
W. Y.
,
Corbishley
,
C. M.
, and
Patel
,
U.
,
2008
, “
Improving Glandular Coverage During Prostate Biopsy Using a Long-Core Needle: Technical Performance of an End-Cutting Needle
,”
BJU Int.
,
89
(
1
), pp.
40
43
.10.1046/j.1464-410X.2002.02531.x
3.
Iczkowski
,
K. A.
,
Casella
,
G.
,
Seppala
,
R. J.
,
Jones
,
G. L.
,
Mishler
,
B. A.
,
Qian
,
J.
, and
Bostwick
,
D. G.
,
2002
, “
Needle Core Length in Sextant Biopsy Influences Prostate Cancer Detection Rate
,”
Urology
,
59
(
5
), pp.
698
703
.10.1016/S0090-4295(02)01515-7
4.
Fink
,
K. G.
,
Hutarew
,
G.
,
Pytel
,
A.
, and
Schmeller
,
N. T.
,
2005
, “
Prostate Biopsy Outcome Using 29 mm Cutting Length
,”
Urol. Int.
,
75
(
3
), pp.
209
212
.10.1159/000087795
5.
Taylor
,
R. H.
,
Menciassi
,
A.
,
Fichtinger
,
G.
,
Fiorini
,
P.
, and
Dario
,
P.
,
2016
, “
Medical Robotics and Computer-Integrated Surgery
,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1657
1684
.
6.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.10.1109/TBME.2004.831542
7.
Abolhassani
,
N.
, and
Patel
,
R. V.
,
2006
, “
Minimization of Needle Deflection in Robot-Assisted Prostate Brachytherapy
,”
Int. J. Comput. Assist. Radiol. Surg.
,
1
, pp. 269–271.10.1007/s11548-006-0021-0
8.
Abolhassani
,
N.
,
Patel
,
R. V.
, and
Ayazi
,
F.
,
2007
, “
Minimization of Needle Deflection in Robot-Assisted Percutaneous Therapy
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
3
(
2
), pp.
140
148
.10.1002/rcs.136
9.
Moore
,
J. Z.
,
Zhang
,
Q.
,
McGill
,
C. S.
,
Zheng
,
H.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2010
, “
Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051005
.10.1115/1.4002190
10.
Wang
,
Y.
,
Chen
,
R. K.
,
Tai
,
B. L.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2014
, “
Optimal Needle Design for Minimal Insertion Force and Bevel Length
,”
Med. Eng. Phys.
,
36
(
9
), pp.
1093
1100
.10.1016/j.medengphy.2014.05.013
11.
Wang
,
Y.
,
Tai
,
B. L.
,
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
The Needle With Lancet Point: Geometry for Needle Tip Grinding and Tissue Insertion Force
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041010
.10.1115/1.4023718
12.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann.
,
60
(
1
), pp.
157
160
.10.1016/j.cirp.2011.03.101
13.
Meltsner
,
M. A.
,
Ferrier
,
N. J.
, and
Thomadsen
,
B. R.
,
2007
, “
Observations on Rotating Needle Insertions Using a Brachytherapy Robot
,”
Phys. Med. Biol.
,
52
(
19
), p.
6027
.10.1088/0031-9155/52/19/021
14.
Atkins
,
A. G.
,
Xu
,
X.
, and
Jeronimidis
,
G.
,
2004
, “
Cutting, by ‘Pressing and Slicing,' of Thin Floppy Slices of Materials Illustrated by Experiments on Cheddar Cheese and Salami
,”
J. Mater. Sci.
,
39
(
8
), pp.
2761
2766
.10.1023/B:JMSC.0000021451.17182.86
15.
Han
,
P.
, and
Ehmann
,
K.
,
2013
, “
Study of the Effect of Cannula Rotation on Tissue Cutting for Needle Biopsy
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1584
1590
.10.1016/j.medengphy.2013.05.001
16.
Roesthuis
,
R. J.
,
van Veen
,
Y. R. J.
,
Jahya
,
A.
, and
Misra
,
S.
, “
Mechanics of Needle-Tissue Interaction
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
2557
2563
.10.1109/IROS.2011.6094969
17.
Wan
,
G.
,
Wei
,
Z.
,
Gardi
,
L.
,
Downey
,
D. B.
, and
Fenster
,
A.
,
2005
, “
Brachytherapy Needle Deflection Evaluation and Correction
,”
Med. Phys.
,
32
(
4
), pp.
902
909
.10.1118/1.1871372
18.
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2010
, “
A Compact Dynamic Force Model for Needle-Tissue Interaction
,”
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
2292
2295
.10.1109/IEMBS.2010.5627706
19.
Wang
,
Y.
,
Tai
,
B. L.
,
Yu
,
H.
, and
Shih
,
A. J.
,
2014
, “
Silicone-Based Tissue-Mimicking Phantom for Needle Insertion Simulation
,”
ASME J. Med. Devices
,
8
(
2
), p.
021001
.10.1115/1.4026508
20.
Li
,
W.
,
Belmont
,
B.
, and
Shih
,
A.
,
2015
, “
Design and Manufacture of Polyvinyl Chloride (PVC) Tissue Mimicking Material for Needle Insertion
,”
Procedia Manuf.
,
1
, pp.
866
878
.10.1016/j.promfg.2015.09.078
21.
Zhang
,
M.
,
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
,
1997
, “
Estimating the Effective Young's Modulus of Soft Tissues From Indentation Tests—Nonlinear Finite Element Analysis of Effects of Friction and Large Deformation
,”
Med. Eng. Phys.
,
19
(
6
), pp.
512
517
.10.1016/S1350-4533(97)00017-9
22.
Taguchi
,
G.
, and
Konishi
,
S.
,
1992
,
Taguchi Methods
,
Research and Development, American Supplier Institute
, Dearborn, MI.
23.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.