Abstract

The coronavirus disease of 2019 (COVID-19) has altered medical practice around the globe and revealed critical deficiencies in hospital supply chains ranging from adequate personal protective equipment to life-sustaining ventilators for critically ill hospitalized patients. We developed the CRISIS ventilator, a gas-powered resuscitator that functions without electricity, and which can be manufactured using hobby-level three-dimensional (3D) printers and standard off-the-shelf equipment available at the local hardware store. CRISIS ventilators were printed and used to ventilate sedated female Yorkshire pigs over 24-h. Pulmonary and hemodynamic values were recorded throughout the 24-h run, and serial arterial blood samples were obtained to assess ventilation and oxygenation. Lung tissue was obtained from each pig to evaluate for signs of inflammatory stress. All five female Yorkshire pigs survived the 24-h study period without suffering from hypoxemia, hypercarbia, or severe hypotension requiring intervention. One animal required rescue at the beginning of the experiment with a traditional ventilator due to leakage around a defective tracheostomy balloon. The wet/dry ratio was 6.74 ± 0.19 compared to historical controls of 7.1 ± 4.2 (not significantly different). This proof-of-concept study demonstrates that our 3D-printed CRISIS ventilator can ventilate and oxygenate a porcine model over the course of 24-h with stable pulmonary and hemodynamic function with similar levels of ventilation-related inflammation when compared with a previous control porcine model. Our work suggests that virtual stockpiling with just-in-time 3D-printed equipment, like the CRISIS ventilator, can temporize shortages of critical infrastructure needed to sustain life for hospitalized patients.

References

1.
Hertelendy
,
A. J.
,
Ciottone
,
G. R.
,
Mitchell
,
C. L.
,
Gutberg
,
J.
, and
Burkle
,
F. M.
,
2021
, “
Crisis Standards of Care in a Pandemic: Navigating the Ethical, Clinical, Psychological and Policy-Making Maelstrom
,”
Int. J. Qual. Health Care
,
33
(
1
), epub. 10.1093/intqhc/mzaa094
2.
Kaliya-Perumal
,
A. K.
,
Kharlukhi
,
J.
, and
Omar
,
U. F.
,
2020
, “
The Second Wave of COVID-19: Time to Think of Strategic Stockpiles
,”
Can. J. Public Health
,
111
(
4
), pp.
486
487
.10.17269/s41997-020-00371-w
3.
Ramachandran
,
P.
,
Swamy
,
L.
,
Kaul
,
V.
, and
Agrawal
,
A.
,
2020
, “
A National Strategy for Ventilator and ICU Resource Allocation During the Coronavirus Disease 2019 Pandemic
,”
Chest
,
158
(
3
), pp.
887
889
.10.1016/j.chest.2020.04.050
4.
Wilgis
,
J.
,
2008
, “
Strategies for Providing Mechanical Ventilation in a Mass Casualty Incident: Distribution Versus Stockpiling
,”
Respir. Care
,
53
(
1
), pp.
96
100
(discussion 100-103).http://rc.rcjournal.com/content/53/1/96
5.
Handfield
,
R.
,
Finkenstadt
,
D. J.
,
Schneller
,
E. S.
,
Godfrey
,
A. B.
, and
Guinto
,
P.
,
2020
, “
A Commons for a Supply Chain in the Post-COVID-19 Era: The Case for a Reformed Strategic National Stockpile
,”
Milbank Q.
,
98
(
4
), pp.
1058
1090
.10.1111/1468-0009.12485
6.
Trovao
,
J. P.
,
2020
, “
Automotive Electronics Under the COVID-19 Shadow [Automotive Electronics]
,”
IEEE Veh. Technol. Mag.
,
15
(
3
), pp.
101
108
.10.1109/MVT.2020.2998710
7.
Bertsimas
,
D.
,
Boussioux
,
L.
,
Cory-Wright
,
R.
,
Delarue
,
A.
,
Digalakis
,
V.
,
Jacquillat
,
A.
,
Kitane
,
D. L.
,
Lukin
,
G.
,
Li
,
M.
,
Mingardi
,
L.
,
Nohadani
,
O.
,
Orfanoudaki
,
A.
,
Papalexopoulos
,
T.
,
Paskov
,
I.
,
Pauphilet
,
J.
,
Lami
,
O. S.
,
Stellato
,
B.
,
Bouardi
,
H. T.
,
Carballo
,
K. V.
,
Wiberg
,
H.
, and
Zeng
,
C.
,
2021
, “
From Predictions to Prescriptions: A Data-Driven Response to COVID-19
,”
Health Care Manag. Sci.
,
24
(
2
), pp.
253
272
.10.1007/s10729-020-09542-0
8.
Blakeman
,
T.
,
Rodriquez
,
D.
,
Johannigman
,
J.
, and
Branson
,
R.
,
2019
, “
Pulsed Dose Oxygen Delivery During Mechanical Ventilation: Impact on Oxygenation
,”
Mil. Med.
,
184
(
5–6
), pp.
e312
e318
.10.1093/milmed/usy362
9.
Brito
,
A.
,
Fontaine
,
E.
,
El Haddi
,
S. J.
, and
Chi
,
A.
, “
Crisis Ventilator: A 3D Printed Option for Pressure Controlled Ventilation
,”
ASME
Paper No. DMD2021-1084.10.1115/DMD2021-1084
10.
Szlosarek
,
R.
,
Teichert
,
R.
,
Wetzel
,
A.
,
Fichtner
,
A.
,
Reuter
,
F.
, and
Kroger
,
M.
,
2021
, “
Design and Construction of a Simplified, Gas-Driven, Pressure-Controlled Emergency Ventilator
,”
Afr. J. Emer. Med.
,
11
(
1
), pp.
175
181
.10.1016/j.afjem.2020.09.018
11.
Terragni
,
P.
,
Maiolo
,
G.
, and
Ranieri
,
V. M.
,
2012
, “
Role and Potentials of Low-Flow CO2 Removal System in Mechanical Ventilation
,”
Curr. Opin. Crit. Care
,
18
(
1
), pp.
93
98
.10.1097/MCC.0b013e32834f17ef
12.
Moon
,
P. F.
,
Scarlett
,
J. M.
,
Ludders
,
J. W.
,
Conway
,
T. A.
, and
Lamb
,
S. V.
,
1995
, “
Effect of Fentanyl on the Minimum Alveolar Concentration of Isoflurane in Swine
,”
Anesthesiology
,
83
(
3
), pp.
535
542
.10.1097/00000542-199509000-00012
13.
Matute-Bello
,
G.
,
Frevert
,
C. W.
, and
Martin
,
T. R.
,
2008
, “
Animal Models of Acute Lung Injury
,”
Am. J. Physiol. Lung Cell Mol. Physiol.
,
295
(
3
), pp.
L379
399
.10.1152/ajplung.00010.2008
14.
Dar
,
M.
,
Swamy
,
L.
,
Gavin
,
D.
, and
Theodore
,
A.
,
2021
, “
Mechanical-Ventilation Supply and Options for the COVID-19 Pandemic. Leveraging All Available Resources for a Limited Resource in a Crisis
,”
Ann. Am. Thorac. Soc.
,
18
(
3
), pp.
408
416
.10.1513/AnnalsATS.202004-317CME
15.
Beitler
,
B. G.
,
Abraham
,
P. F.
,
Glennon
,
A. R.
,
Tommasini
,
S. M.
,
Lattanza
,
L. L.
,
Morris
,
J. M.
, and
Wiznia
,
D. H.
,
2022
, “
Interpretation of Regulatory Factors for 3D Printing at Hospitals and Medical Centers, or at the Point of Care
,”
3D Print Med.
,
8
(
1
), p.
7
.10.1186/s41205-022-00134-y
16.
Olivieri
,
L.
,
Su
,
L.
,
Hynes
,
C.
,
Krieger
,
A.
,
Alfares
,
F.
,
Ramakrishnan
,
K.
,
Zurakowski
,
D.
,
Marshall
,
B.
,
Kim
,
P.
,
Jonas
,
R.
, and
Nath
,
D.
,
2016
, “
Just-In-Time Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery
,”
World J. Pediatr. Congen. Heart Surg.
,
7
(
2
), pp.
164
168
.10.1177/2150135115623961
17.
Shidid
,
D.
,
Leary
,
M.
,
Choong
,
P.
, and
Brandt
,
M.
,
2016
, “
Just-in-Time Design and Additive Manufacture of Patient-Specific Medical Implants
,”
Phys. Procedia
,
83
, pp.
4
14
.10.1016/j.phpro.2016.08.002
You do not currently have access to this content.