Abstract

Ingestible devices have become a popular means for diagnosing and treating the gastrointestinal (GI) tract due to their noninvasive nature. However, their residency period in the GI tract is limited by the transit time through it. In previous work, we designed a tissue attachment mechanism (TAM) inspired by parasitic worms' attachment methods, which were tested for implanting biosensors or drug delivery payloads to the small intestine with a swallowable capsule robot. In that work, the attachment success rate was 91.7%, and the average attachment duration of the TAM was 32.2 h after factorial optimization of major design factors. This work develops a novel nitinol TAM (NTAM) for improving the attachment duration using the shape-changing properties of nitinol. The attachment strength of the NTAM to the intestinal tissue was assessed both ex vivo and in vivo. The attachment duration of the NTAMs in live porcine models was evaluated from radiographic images, and histological analysis of the attachment location of an NTAM was performed after euthanasia. The NTAM was 100% successful in an attachment strength study and achieved a maximum attachment duration of 13 days, while the average attachment duration was 85.63 ± 77.83 h. Histological analysis did not report any permanent damage to the tissue. This work shows a 2.7-fold improvement in attachment duration over the previous design. This work has demonstrated a method of prolonged attachment to the intestinal wall through a swallowable device, which can be used for long-term drug delivery or biosensing.

References

1.
Chaudri
,
N. A.
,
2004
, “
Adherence to Long-Term Therapies Evidence for Action
,”
Annals Saudi Med.
,
24
(
3
), pp.
221
222
.10.5144/0256-4947.2004.221
2.
Atinga
,
R. A.
,
Yarney
,
L.
, and
Gavu
,
N. M.
,
2018
, “
Factors Influencing Long-Term Medication Non-Adherence Among Diabetes and Hypertensive Patients in Ghana: A Qualitative Investigation
,”
PLoS ONE
,
13
(
3
), p.
e0193995
.10.1371/journal.pone.0193995
3.
Kishimoto
,
H.
, and
Maehara
,
M.
,
2015
, “
Compliance and Persistence With Daily, Weekly, and Monthly Bisphosphonates for Osteoporosis in Japan: Analysis of Data From the CISA
,”
Arch. Osteoporosis
,
10
(
1
), p.
231
.10.1007/s11657-015-0231-6
4.
Kalantar-Zadeh
,
K.
,
Ha
,
N.
,
Ou
,
J. Z.
, and
Berean
,
K. J.
,
2017
, “
Ingestible Sensors
,”
ACS Sens.
,
2
(
4
), pp.
468
483
.10.1021/acssensors.7b00045
5.
Steiger
,
C.
,
Abramson
,
A.
,
Nadeau
,
P.
,
Chandrakasan
,
A. P.
,
Langer
,
R.
, and
Traverso
,
G.
,
2018
, “
Ingestible Electronics for Diagnostics and Therapy
,”
Nat. Rev. Mater.
,
4
(
2
), pp.
83
98
.10.1038/s41578-018-0070-3
6.
Mandsberg
,
N. K.
,
Christfort
,
J. F.
,
Kamguyan
,
K.
,
Boisen
,
A.
, and
Srivastava
,
S. K.
,
2020
, “
Orally Ingestible Medical Devices for Gut Engineering
,”
Adv. Drug Delivery Rev.
,
165–166
, pp.
142
154
.10.1016/j.addr.2020.05.004
7.
Min
,
J.
,
Yang
,
Y.
,
Wu
,
Z.
, and
Gao
,
W.
,
2019
, “
Robotics in the Gut
,”
Adv. Ther.
,
3
, p.
1900125
.10.1002/adtp.201900125
8.
Mau
,
M. M.
,
Sarker
,
S.
, and
Terry
,
B. S.
,
2021
, “
Ingestible Devices for Long-Term Gastrointestinal Residency: A Review
,”
Prog. Biomed. Eng.
,
3
(
4
), p.
042001
.10.1088/2516-1091/ac1731
9.
Kong
,
Y. L.
,
Zou
,
X.
,
McCandler
,
C. A.
,
Kirtane
,
A. R.
,
Ning
,
S.
,
Zhou
,
J.
, et al.,
2019
, “
3D-Printed Gastric Resident Electronics
,”
Adv. Mater. Technol.
,
4
(
3
), p.
1800490
.10.1002/admt.201800490
10.
Yim
,
S.
, and
Sitti
,
M.
,
2012
, “
Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery
,”
IEEE Trans. Robot.
,
28
(
5
), pp.
1198
1202
.10.1109/TRO.2012.2197309
11.
Kirtane
,
A. R.
,
Abouzid
,
O.
,
Minahan
,
D.
,
Bensel
,
T.
,
Hill
,
A. L.
,
Selinger
,
C.
,
Bershteyn
,
A.
,
Craig
,
M.
,
Mo
,
S. S.
,
Mazdiyasni
,
H.
,
Cleveland
,
C.
,
Rogner
,
J.
,
Lee
,
Y.-A. L.
,
Booth
,
L.
,
Javid
,
F.
,
Wu
,
S. J.
,
Grant
,
T.
,
Bellinger
,
A. M.
,
Nikolic
,
B.
,
Hayward
,
A.
,
Wood
,
L.
,
Eckhoff
,
P. A.
,
Nowak
,
M. A.
,
Langer
,
R.
, and
Traverso
,
G.
,
2018
, “
Development of an Oral Once-Weekly Drug Delivery System for HIV Antiretroviral Therapy
,”
Nat. Commun.
,
9
(
1
), p.
2
.10.1038/s41467-017-02294-6
12.
Kirtane
,
A. R.
,
Hua
,
T.
,
Hayward
,
A.
,
Bajpayee
,
A.
,
Wahane
,
A.
,
Lopes
,
A.
,
Bensel
,
T.
, et al.,
2019
, “
A Once-a-Month Oral Contraceptive
,”
Sci. Transl. Med.
,
11
(
521
), p. eaay2602.10.1126/scitranslmed.aay2602
13.
Bellinger
,
A. M.
,
Jafari
,
M.
,
Grant
,
T. M.
,
Zhang
,
S.
,
Slater
,
H. C.
,
Wenger
,
E. A.
,
Mo
,
S.
, et al.,
2016
, “
Oral, Ultra–Long-Lasting Drug Delivery: Application Toward Malaria Elimination Goals
,”
Sci. Transl. Med.
,
8
(
365
), p.
365ra157
.10.1126/scitranslmed.aag2374
14.
Hua
,
S.
,
2020
, “
Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors
,”
Front. Pharmacol.
,
11
, p.
524
.10.3389/fphar.2020.00524
15.
Lee
,
Y.-A. L.
,
Zhang
,
S.
,
Lin
,
J.
,
Langer
,
R.
, and
Traverso
,
G.
,
2016
, “
A Janus Mucoadhesive and Omniphobic Device for Gastrointestinal Retention
,”
Adv. Healthcare Mater.
,
5
(
10
), pp.
1141
1146
.10.1002/adhm.201501036
16.
Liu
,
X.
,
Yang
,
Y.
,
Inda
,
M. E.
,
Lin
,
S.
,
Wu
,
J.
,
Kim
,
Y.
,
Chen
,
X.
,
Ma
,
D.
,
Lu
,
T. K.
, and
Zhao
,
X.
,
2021
, “
Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis
,”
Adv. Funct. Mater.
,
31
(
27
), p.
2010918
.10.1002/adfm.202010918
17.
Xie
,
W.
,
Racz
,
G. R.
,
Terry
,
B. S.
, and
Gardner
,
S. L.
,
2017
, “
A Method for Measuring the Attachment Strength of the Cestode Hymenolepis Diminuta to the Rat Intestine
,”
J. Helminthol.
,
91
(
6
), pp.
762
766
.10.1017/S0022149X1600078X
18.
Xie
,
W.
, and
Terry
,
B. S.
,
2014
, “
Biomimetic Attachment to the Gastrointestinal Tract
,”
ASME J. Med. Devices
,
8
(
3
), p.
030909
.10.1115/1.4027103
19.
Xie
,
W.
,
Kothari
,
V.
, and
Terry
,
B. S.
,
2015
, “
A Bio-Inspired Attachment Mechanism for Long-Term Adhesion to the Small Intestine
,”
Biomed. Microdevices
,
17
(
4
), p.
68
.10.1007/s10544-015-9972-7
20.
Xie
,
W.
,
Lewis
,
W. M.
,
Kaser
,
J.
,
Ross Welch
,
C.
,
Li
,
P.
,
Nelson
,
C. A.
,
Kothari
,
V.
, and
Terry
,
B. S.
,
2017
, “
Design and Validation of a Biosensor Implantation Capsule Robot
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081003
.10.1115/1.4036607
21.
Sarker
,
S.
,
Wankum
,
B.
,
Shimizu
,
J.
,
Jones
,
R.
, and
Terry
,
B. S.
,
2021
, “
A Factorial Approach for Optimizing the Design Parameters of a Tissue Attachment Mechanism for Drug Delivery
,”
IEEE Trans. Biomed. Eng.
,
69
(
1
), p.
1
.10.1109/TBME.2021.3086975
22.
Wadood
,
A.
,
2016
, “
Brief Overview on Nitinol as Biomaterial
,”
Adv. Mater. Sci. Eng.
,
2016
, pp.
e4173138
9
.10.1155/2016/4173138
23.
Miftahof
,
R.
, and
Akhmadeev
,
N.
,
2007
, “
Dynamics of Intestinal Propulsion
,”
J. Theor. Biol.
,
246
(
2
), pp.
377
393
.10.1016/j.jtbi.2007.01.006
24.
Gonzalez
,
L. M.
,
Moeser
,
A. J.
, and
Blikslager
,
A. T.
,
2015
, “
Porcine Models of Digestive Disease: The Future of Large Animal Translational Research
,”
Transl. Res. J. Lab. Clin. Med.
,
166
(
1
), pp.
12
27
.10.1016/j.trsl.2015.01.004
25.
Maderuelo
,
C.
,
Lanao
,
J. M.
, and
Zarzuelo
,
A.
,
2019
, “
Enteric Coating of Oral Solid Dosage Forms as a Tool to Improve Drug Bioavailability
,”
Eur. J. Pharm. Sci.
,
138
, p.
105019
.10.1016/j.ejps.2019.105019
26.
Sarker
,
S.
,
Wankum
,
B.
,
Perey
,
T.
,
Mau
,
M. M.
,
Shimizu
,
J.
,
Jones
,
R.
, and
Terry
,
B. S.
,
2021
, “
A Novel Capsule-Delivered Enteric Drug-Injection Device for Delivery of Systemic Biologics: A Pilot Study in a Porcine Model
,”
IEEE Trans. Biomed. Eng.
,
69
(
6
), pp.
1870
1879
.10.1109/TBME.2021.3129653
You do not currently have access to this content.