Abstract

This review article provides an overview of some challenges that arise when developing new medical robotic microgrippers. The main challenges are due to miniaturization and are present in the manufacturing and assembly processes, the types of mechanisms, the biomaterials used, the actuation principles, and the compliance with some standards and regulations. The main medical fields where these microgrippers are used are in minimally invasive surgery (MIS) and biomedical applications. Therefore, taking these two large groups into account, this review presents a microgrippers classification according to the type of mechanism used (traditional rigid-body mechanisms and complaint mechanisms). Moreover, parameters such as applications, functionalities, degrees-of-freedom (DOF), sizes, range of motion, biomaterial used, and proposed methods are highlighted. The analysis of 27 microgrippers among commercial and developed by research institutes is presented.

References

1.
Hardon
,
S.
,
Schilder
,
F.
,
Bonjer
,
J.
,
Dankelman
,
J.
, and
Horeman
,
T.
,
2019
, “
A New Modular Mechanism That Allows Full Detachability and Cleaning of Steerable Laparoscopic Instruments
,”
Surg. Endoscopy
,
33
(
10
), pp.
3484
3493
.10.1007/s00464-019-06849-0
2.
Polla
,
D. L.
,
Erdman
,
A. G.
,
Robbins
,
W. P.
,
Markus
,
D. T.
,
Diaz-Diaz
,
J.
,
Rizq
,
R.
,
Nam
,
Y.
,
Brickner
,
H. T.
,
Wang
,
A.
, and
Krulevitch
,
P.
,
2000
, “
Microdevices in Medicine
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
551
576
.10.1146/annurev.bioeng.2.1.551
3.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
4.
Surtex-Instruments
,
2020
, “
Basic Types of Surgical Instruments and Their Applications
,” Surtex-Instruments, Surrey, UK, accessed Aug. 4, 2020, https://surtex-instruments.com/basic-types-of-surgical-instruments-and-their-applications/
5.
Holcomb
,
G. W.
,
2010
, “
Laparoscopy
,”
Ashcraft's Pediatric Surgery
, 5th ed.,
G. W.
Holcomb
,
J. P.
Murphy
, and
D. J.
Ostlie
, eds.,
W.B. Saunders
,
Philadelphia, PA
, pp.
641
666
.
6.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2009
, “
Toward a Miniaturized Mechanical Surgeon
,”
Mater. Today
,
12
(
10
), pp.
14
20
.10.1016/S1369-7021(09)70272-X
7.
Prasad
,
M.
,
2020
, “
Common Types of Gastrointestinal Surgical Procedures
,” Anchorage, AL, accessed May 20, 2021, https://www.farnorthsurgery.com/blog/common-types-of-gastrointestinal-surgical-procedures
8.
Rudiman
,
R.
,
2021
, “
Minimally Invasive Gastrointestinal Surgery: From Past to the Future
,”
Ann. Med. Surg.
,
71
, p.
102922
.10.1016/j.amsu.2021.102922
9.
Robinson
,
T. N.
, and
Stiegmann
,
G. V.
,
2004
, “
Minimally Invasive Surgery
,”
Endoscopy
,
36
(
1
), pp.
48
51
.10.1055/s-2004-814113
10.
Kim
,
S. S.
, and
Donahue
,
T. R.
,
2018
, “
Laparoscopic Cholecystectomy
,”
JAMA
,
319
(
17
), p.
1834
.10.1001/jama.2018.3438
11.
Haribhakti
,
S. P.
, and
Mistry
,
J. H.
,
2015
, “
Techniques of Laparoscopic Cholecystectomy: Nomenclature and Selection
,”
J. Minimal Access Surg.
,
11
(
2
), pp.
113
115
.10.4103/0972-9941.140220
12.
Agresta
,
F.
,
Campanile
,
F.
,
Vettoretto
,
N.
,
Silecchia
,
G.
,
Bergamini
,
C.
,
Maida
,
P.
,
Lombari
,
P.
, et al.,
2015
, “
Laparoscopic Cholecystectomy: Consensus Conference-Based Guidelines
,”
Langenbeck's Arch. Surg./Dtsch. Ges. Chir.
,
400
(
4
), pp.
429
453
.10.1007/s00423-015-1300-4
13.
Majumder
,
A.
,
Altieri
,
M. S.
, and
Brunt
,
L. M.
,
2020
, “
How Do I Do It: Laparoscopic Cholecystectomy
,”
Ann. Laparoscopic Endoscopic Surg.
,
5
, p.
15
.10.21037/ales.2020.02.06
14.
Deveney
,
K.
,
2006
,
Laparoscopic Cholecystectomy
,
Springer
,
New York
, pp.
130
139
.
15.
Barrow
,
D.
, and
Bendok
,
B.
,
2019
, “
Introduction: What Is Neurosurgery?
,”
Operative Neurosurg.
,
17
(
Suppl_1
), pp.
S1
S2
.10.1093/ons/opz071
16.
Dogangil
,
G.
,
Davies
,
B.
, and
Rodriguez y Baena
,
F.
,
2010
, “
A Review of Medical Robotics for Minimally Invasive Soft Tissue Surgery
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
5
), pp.
653
679
.10.1243/09544119JEIM591
17.
Well-Cornell-Medicine
,
2022
, “
Minimally Invasive/Endoscopic Neurosurgery
,” Well-Cornell-Medicine, New York, accessed July 18, 2023, https://weillcornellbrainandspine.org/programs/minimally-invasive-endoscopic-neurosurgery
18.
Bauer
,
B. L.
, and
Hellwig
,
D.
,
1994
, “
Minimally Invasive Endoscopic Neurosurgery—A Survey
,”
Minimally Invasive Neurosurgery II
,
B. L.
Bauer
and
D.
Hellwig
, eds.,
Springer
,
Vienna, Austria
, pp.
1
12
.
19.
Shaikh
,
S.
, and
Deopujari
,
C.
,
2020
, “
Review Open Access Mini-Invasive Surgery the Endoscope and Instruments for Minimally Invasive Neurosurgery
,”
Mini-Invasive Surg.
,
2020
(
4
), p.
89
.10.20517/2574-1225.2020.97
20.
Vargas
,
H.
, and
Vivas
,
O.
,
2020
, “
Robotics in Surgery and Neurosurgery, Applications and Challenges, A Review
,”
Sci. Tech.
,
25
(
3
), pp.
478
490
.10.22517/23447214.21131
21.
Mayo-Clinic
,
2021
, “
Minimally Invasive Heart Surgery
,” Jacksonville, FL, accessed July 18, 2023, https://www.mayoclinic.org/tests-procedures/minimally-invasive-heart-surgery/about/pac-20384895
22.
Stanford-Health-Care
,
2022
, “
Minimally Invasive Heart Surgery
,” Stanford-Health-Care, Stanford, CA, accessed July 18, 2023, https://stanfordhealthcare.org/medical-treatments/m/minimally-invasive-heart-surgery.html
23.
Modine
,
T.
, and
Elarid
,
J.
,
2012
, “
Minimally Invasive Cardiac Surgery, Port-Access and Robotic Surgery
,”
Minimized Cardiopulmonary Bypass Techniques and Technologies
(Woodhead Publishing Series in Biomaterials),
T.
Gourlay
and
S.
Gunaydin
, eds.,
Woodhead Publishing
, Sawston, UK, pp.
229
244
.
24.
Badawy
,
A.
,
El-Minshawy
,
A.
,
Ayyad
,
M.
, and
Nady
,
M.
,
2020
, “
Minimally Invasive Cardiac Surgery Versus Conventional Cardiac Surgery
,” Ph.D. thesis,
Assiut University
, Asyut, Egypt.
25.
Bayram
,
A.
,
Eskiizmir
,
G.
,
Cingi
,
C.
, and
Hanna
,
E.
,
2020
, “
Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow
,”
ENT Updates
,
10
(
2
), pp.
361
371
.10.32448/entupdates.780604
26.
Fagan
,
J.
,
2008
, “Open Access Atlas of Otolaryngology,
Head and Neck Operative Surgery
,” Cape Town, South Africa, accessed July 18, 2023, www.entdev.uct.ac.za
27.
da Vinci
,
2016
, “
Transoral Surgery-Procedure Guide
,” da Vinci, CA, accessed July 18, 2023, https://oto.med.upenn.edu/wp-content/uploads/sites/25/2016/06/daVinciTORSProcedureGuide.pdf
28.
Oliveira
,
C. M.
,
Nguyen
,
H. T.
,
Ferraz
,
A. R.
,
Watters
,
K.
,
Rosman
,
B.
, and
Rahbar
,
R.
,
2012
, “
Robotic Surgery in Otolaryngology and Head and Neck Surgery: A Review
,”
Minimally Invasive Surg.
,
2012
(
5
), pp.
1
11
.10.1155/2012/286563
29.
Mayo Clinic
,
2022
, “
Minimally Invasive Gynecologic Surgery
,” Mayo Clinic, Rochester, MN, accessed Sept. 14, 2022, https://www.mayoclinic.org/departments-centers/minimally-invasive-gynecologic-surgery/overview/ovc-20424071
30.
Visco
,
A. G.
, and
Advincula
,
A. P.
,
2008
, “
Robotic Gynecologic Surgery
,”
Obstet. Gynecol.
,
112
(
6
), pp.
1369
1384
.10.1097/AOG.0b013e31818f3c17
31.
Antonilli
,
M.
,
Sevas
,
V.
,
Gasparri
,
M. L.
,
Farooqi
,
A. A.
, and
Papadia
,
A.
,
2021
, “
Minimally Invasive Surgery in Gynecology
,”
Advances in Minimally Invasive Surgery
,
A.
Sanna
, ed.,
IntechOpen
,
Rijeka, Croatia
, Chap.
2
.
32.
Koo
,
Y.-J.
,
2018
, “
Recent Advances in Minimally Invasive Surgery for Gynecologic Indications
,”
Yeungnam Univ. J. Med.
,
35
(
2
), pp.
150
155
.10.12701/yujm.2018.35.2.150
33.
Falcone
,
T.
,
Uy-Kroh
,
M. J.
,
Bradley
,
L.
, and
Berek
,
J. S.
,
2017
,
Operative Techniques in Gynecologic Surgery
,
Wolters Kluwer
, Stanford, CA.
34.
Shrestha
,
B.
,
2011
, “
Natural Orifice Transluminal Endoscopic Surgery (Notes): An Emerging Technique in Surgery
,”
JNMA; J. Nepal Med. Assoc.
,
51
(
184
), pp.
209
212
.
35.
Nesargikar
,
P.
, and
Jaunoo
,
S.
,
2009
, “
Natural Orifice Translumenal Endoscopic Surgery (N.O.T.E.S)
,”
Int. J. Surg.
,
7
(
3
), pp.
232
236
.10.1016/j.ijsu.2009.04.001
36.
McGee
,
M. F.
,
Rosen
,
M. J.
,
Marks
,
J.
,
Onders
,
R. P.
,
Chak
,
A.
,
Faulx
,
A.
,
Chen
,
V. K.
, and
Ponsky
,
J.
,
2006
, “
A Primer on Natural Orifice Transluminal Endoscopic Surgery: Building a New Paradigm
,”
Surg. Innovation
,
13
(
2
), pp.
86
93
.10.1177/1553350606290529
37.
Huang
,
C.
,
Huang
,
R.-X.
, and
Qiu
,
Z.-J.
,
2011
, “
Natural Orifice Transluminal Endoscopic Surgery: New Minimally Invasive Surgery Come of Age
,”
World J. Gastroenterol.
,
17
(
39
), pp.
4382
4388
.10.3748/wjg.v17.i39.4382
38.
Lehman
,
A. C.
,
Wood
,
N. A.
,
Dumpert
,
J.
,
Oleynikov
,
D.
, and
Farritor
,
S. M.
,
2008
, “
Robotic Natural Orifice Translumenal Endoscopic Surgery
,” Proceedings of the
2008 IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
2969
2974
.
39.
Chircov
,
C.
, and
Grumezescu
,
A. M.
,
2022
, “
Microelectromechanical Systems (MEMS) for Biomedical Applications
,”
Micromachines
,
13
(
2
), p.
164
.10.3390/mi13020164
40.
Gaafar
,
E.
,
Zarog
,
M.
, and
IEEE Senior Member
,
2017
, “
A Low-Stress and Low Temperature Gradient Microgripper for Biomedical Applications
,”
Microsyst. Technol.
,
23
(
12
), pp.
5415
5422
.10.1007/s00542-017-3325-9
41.
Fu
,
Y.
,
Luo
,
J.
,
Flewitt
,
A.
, and
Milne
,
W.
,
2012
, “
Smart Microgrippers for bioMEMS Applications
,”
MEMS for Biomedical Applications
(Woodhead Publishing Series in Biomaterials),
S.
Bhansali
and
A.
Vasudev
, eds.,
Woodhead Publishing
, West of Scotland, UK, pp.
291
336
.
42.
Gunasekaran
,
S.
,
Periyagounder
,
S.
,
Annamalai
,
S.
, and
Balaji
,
A.
,
2020
, “
Design and Analysis of Compliant Microgripper—A Review
,”
AIP Conf. Proc.
,
2283
(
1
), p.
20100
.10.1063/5.0024894
43.
Chronis
,
N.
, and
Lee
,
L.
,
2005
, “
Electrothermally Activated su-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
857
863
.10.1109/JMEMS.2005.845445
44.
Solano
,
B.
,
Gallant
,
A.
, and
Wood
,
D.
,
2009
, “
Design and Optimisation of a Microgripper: Demonstration of Biomedical Applications Using the Manipulation of Oocytes
,”
Proceedings of the 2009 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
, Rome, Italy, Apr. 1–3, pp.
61
65
.https://ieeexplore.ieee.org/document/4919504
45.
Thomas
,
T.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms—A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), pp.
1
21
.10.1115/1.4049491
46.
Saba
,
R.
,
Iqbal
,
S.
,
Shakoor
,
R.
,
Saleem
,
M.
, and
Bazaz
,
S.
,
2021
, “
Design and Analysis of Four-Jaws Microgripper With Integrated Thermal Actuator and Force Sensor for Biomedical Applications
,”
Rev. Sci. Instrum.
,
92
(
4
), p.
045007
.10.1063/5.0032404
47.
ISO
,
2003
, “
Medical Devices—Guidance on the Application of ISO 14971
,”
International Organization for Standardization
, Geneva, Switzerland, Report No. ISO/TR24971.
48.
Press
,
D.
,
2003
,
Guidelines for Failure Mode and Effects Analysis for Medical Devices
,
CRC Press LLC
,
Richmond Hill, ON, Canada
.
49.
Dow
,
T.
, and
Scattergood
,
R.
,
2003
, “
Mesoscale and Microscale Manufacturing Processes: Challenges for Materials, Fabrication and Metrology
,”
Proceedings of the ASPE Winter Topical Meeting
, Tucson, AZ, Mar. 6–7, Vol.
28
, pp.
14
19
.https://www.semanticscholar.org/paper/Mesoscaleand-Microscale-Manufacturing-Processes-%3A-Dow-Scattergood/e674d3c98b713a6e217f33b5a732d14a81f10a0f
50.
Koç
,
M.
, and
Özel
,
T.
,
2011
, “
Fundamentals of Micro-Manufacturing
,”
Micro-Manufacturing: Design and Manufacturing of Micro-Products
,
Wiley
, Hoboken, NJ, pp.
1
23
.
51.
Mattson
,
C.
A.,
2013
, “
Synthesis Through Rigid-Body Replacement
,”
Handbook of Compliant Mechanisms
,
Wiley
, Chichester, UK, pp.
109
121
.
52.
Zhou
,
X.
,
Majidi
,
C.
, and
O'Reilly
,
O. M.
,
2015
, “
Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design
,”
Int. J. Solids Struct.
,
64–65
, pp.
155
165
.10.1016/j.ijsolstr.2015.03.021
53.
Jelínek
,
F.
,
Arkenbout
,
E.
,
Henselmans
,
P.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2015
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art
,”
ASME J. Med. Devices
,
9
(
1
), p.
010801
.10.1115/1.4028649
54.
Simionescu
,
P.
,
2019
, “
New and Revised Mechanism Classifications: Proposal and Motivation
,”
Advances in Mechanism and Machine Science
, Vol.
6
, Spring Nature, Switzerland, pp.
3501
3510
.
55.
Sun
,
Y.
,
Zhang
,
D.
,
Liu
,
Y.
, and
Lueth
,
T. C.
,
2020
, “
FEM-Based Mechanics Modeling of Bio-Inspired Compliant Mechanisms for Medical Applications
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
3
), pp.
364
373
.10.1109/TMRB.2020.3011291
56.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
K.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.10.1115/1.2056561
57.
Tang
,
Y.
,
Chi
,
Y.
,
Sun
,
J.
,
Huang
,
T.-h.
,
Maghsoudi
,
O.
,
Spence
,
A.
,
Zhao
,
J.
,
Su
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots
,”
Sci. Adv.
,
6
(
19
).10.1126/sciadv.aaz6912
58.
Páramo-Carranza
,
L.
,
Lopez-González
,
A.
, and
Tejada
,
J.
,
2022
, “
Compliant Mechanism Soft Robot Design and Peristaltic Movement Optimization Using Random Search
,”
J. Rob.
,
2022
, pp.
1
10
.10.1155/2022/7562164
59.
Bartlett
,
P.
,
2015
, “
Grade 304 Stainless Steel: Uses in the Medical Industry
,” Malaga, Spain.
60.
Adcock
,
E. P.
,
1998
, “
Surgical Instrumentation Use, Care, and Handling
,”
Preservation
,
1
(
1
), pp.
1
72.
https://www.educationandstaffdevelopment.com/wp-content/uploads/2020/05/1958-Surgical-Instrumentation.pdf
61.
Talha
,
M.
,
Behera
,
C.
, and
Sinha
,
O.
,
2012
, “
Potentiodynamic Polarization Study of Type 316 L and 316 LVM Stainless Steels for Surgical Implants in Simulated Body Fluids
,”
J. Chem. Pharm. Res.
,
4
(
1
), pp.
203
208.
https://www.jocpr.com/abstract/potentiodynamicpolarization-study-of-type-316l-and-316lvm-stainless-steelsrnfor-surgical-implants-in-simulatedbody-flu-1242.html
62.
Davis
,
J. R.
,
2003
,
Handbook of Materials for Medical Devices
, Vol.
23
,
ASM International
, Materials Park, OH.
63.
Dharadhar
,
S.
, and
Majumdar
,
A.
,
2019
,
Biomaterials and Its Medical Applications
,
Springer Singapore
,
Singapore
, pp.
355
380
.
64.
Festas
,
A.
,
Ramos
,
A.
, and
Davim
,
J.
,
2020
, “
Medical Devices Biomaterials—A Review
,”
Proc. Inst. Mech. Eng., Part L
,
234
(
1
), pp.
218
228
.10.1177/1464420719882458
65.
Kulinets
,
I.
,
2015
, “
1—Biomaterials and Their Applications in Medicine
,”
Regulatory Affairs for Biomaterials and Medical Devices
(Woodhead Publishing Series in Biomaterials),
S. F.
Amato
and
R. M.
Ezzell
, eds.,
Woodhead Publishing
, Brookline, MA, pp.
1
10
.
66.
Danylenko
,
M.
,
2018
, “
Which Metals Are Commonly Used for Surgical Instruments?
,” Clinton Aluminum, Inc., Norton, OH, accessed July 20, 2023, https://www.clintonaluminum.com/stainless-steel-applications-for-medical-devices/
67.
Tighe
,
S. M.
,
2016
,
Instrumentation for the Operation Room—A Photographic Manual
, 9th ed.,
Elsevier MOSBY
, Lake Havasu, AZ.
68.
Clinton-Aluminum
,
2020
, “
Stainless Steel Applications for Medical Devices
,” Clinton-Aluminum, Melvindale, MI, accessed Apr. 7, 2020, https://www.clintonaluminum.com/stainless-steel-applications-for-medical-devices/
69.
Moss
,
E.
,
2020
, “
Specifying 316 L and Other Medical-Grade Stainless Steels
,” Fareham, UK, Sept. 25, 2020, https://www.pentaprecision.co.uk/specifying-316l-and-other-medical-grade-stainless-steels
70.
Niinomi
,
M.
,
2019
,
Metals for Biomedical Devices
, 2nd ed.,
Matthew Deans
,
Oxford, UK
.
71.
Nah
,
S.
, and
Zhong
,
Z.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators, A
,
133
(
1
), pp.
218
224
.10.1016/j.sna.2006.03.014
72.
Dochshanov
,
A.
,
Verotti
,
M.
, and
Belfiore
,
N.
,
2017
, “
A Comprehensive Survey on Modern Microgrippers Design: Operational Strategy
,”
ASME J. Mech. Des.
,
139
(
7
), p.
070801
.10.1115/1.4036352
73.
Tsai
,
Y.-C.
,
Lei
,
S. H.
, and
Sudin
,
H.
,
2005
, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
,
15
(
1
), pp.
143
156
.10.1088/0960-1317/15/1/022
74.
Yang
,
S.
, and
Xu
,
Q.
,
2017
, “
A Review on Actuation and Sensing Techniques for MEMS-Based Microgrippers
,”
J. Micro-Bio Rob.
,
13
(
1–4
), pp.
1
14
.10.1007/s12213-017-0098-2
75.
Salehi
,
M.
,
Kolahdoozan
,
M.
, and
Heidari
,
P.
,
2018
, “
An Overview of Micro Grippers Used in Micro-Nano-Mechanical Systems and Comparing the Results in Medical Applications
,”
Proceedings of the 4th International and 15th National Conference on Manufacturing Engineering, ICME2018
, Tehran, Iran, Oct. 24–25, pp.
1
6
.https://www.researchgate.net/publication/328743571_An_overview_of_Micro_Grippers_used_in_Micro-Nano-Mechanical_Systems_and_comparing_the_Results_in_Medical_Applications
76.
Agnus
,
J.
,
Nectoux
,
P.
, and
Chaillet
,
N.
,
2005
, “
Overview of Microgrippers and Design of a Micromanipulation Station Based on a MMOC Microgripper
,”
Proceedings of the 2005 International Symposium on Computational Intelligence in Robotics and Automation
, Espoo, Finland, June 27–30, pp.
117
123
.10.1109/CIRA.2005.1554264
77.
Vurchio
,
F.
,
Orsini
,
F.
,
Scorza
,
A.
, and
Sciuto
,
S. A.
,
2019
, “
Functional Characterization of MEMS Microgripper Prototype for Biomedical Application: Preliminary Results
,” Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (
MeMeA
), Istanbul, Turkey, June, 26–28, pp.
1
6
.10.1109/MeMeA.2019.8802178
78.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A. M.
,
Broggiato
,
G. B.
,
Crescenzi
,
R.
,
Balucani
,
M.
, et al.,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.10.3390/mi6111451
79.
Mehrabi
,
H.
, and
Aminzahed
,
I.
,
2020
, “
Design and Testing of a Microgripper With SMA Actuator for Manipulation of Micro Components
,”
Microsyst. Technol.
,
26
(
2
), pp.
531
536
.10.1007/s00542-019-04523-y
80.
Power
,
M.
,
Seneci
,
C. A.
,
Thompson
,
A. J.
, and
Yang
,
G. Z.
,
2017
, “
Modelling and Characterization of a Compliant Tethered Microgripper for Microsurgical Applications
,”
Proceedings of the 2017 International Conference on Manipulation, Automation and Robotics at Small Scales, MARSS
, Montreal, QC, Canada, July 17–21, pp.
1
7
.10.1109/MARSS.2017.8001946
81.
Cheng
,
S.
,
Das
,
D.
, and
Pecht
,
M. G.
,
2011
, “
Using Failure Modes, Mechanisms, and Effects Analysis in Medical Device Adverse Event Investigations
,”
International Conference on Biomedical Ontology
, Buffalo, NY, July 26–30, pp.
340
345
.http://icbo.buffalo.edu/2011/workshop/adverse-events/docs/papers/DigantaAEICBO2011_submission.pdf
82.
Kiran
,
D. R.
,
2017
, “
Failure Modes and Effects Analysis
,”
Total Quality Management
,
Butterworth-Heinemann
, Oxford, UK, pp.
373
389
.
83.
Vroonhoven
,
J. V.
,
2023
, “
Risk Management for Medical Devices and the New BS EN ISO 14971
,” London, UK, accessed July 18, 2023, https://www.medical-device-regulation.eu/wp-content/uploads/2020/09/WP_Risk_management_web.pdf
84.
Oriel
,
2020
, “
ISO 14971 and Medical Device Risk Management 101
,” Oriel, Cork, Ireland, accessed Mar. 21, 2023, https://www.orielstat.com/blog/iso-14971-risk-management-basics/
85.
ISO
,
2019
, “
Medical Devices—Application of Risk Management to Medical Devices
,” ISO/TC 210 Quality Management and Corresponding General Aspects For Medical Devices,
International Organization for Standardization
, Geneva, Switzerland, Technical Report No. ISO 14971.
86.
Da-Vinci
,
2022
, “
Da Vinci by Intuitive
,” Da-Vinci, Sunnyvale, CA, accessed July 18, 2023, https://www.intuitive.com/en-us/products-and-services/da-vinci
87.
Olympus-Medical-Center-Group,
2022
, “
Olympus 3D/Flexdex® for Minimal Access Surgery Simplifies Suturing, Redefines Robotics
,” Olympus-Medical-Center-Group, Paris, France, accessed July 18, 2023, https://medical.olympuscanada.com/products/bleeding-management/coagrasper-hemostatic-grasper-single-use-fd-410lr
88.
FlexDex-Surgical
,
2022
, “
Robotic Functionality. Minus the Robot
,” FlexDex-Surgical, Brighton, MI, accessed Jan. 2, 2022, https://flexdex.com/
89.
S.p.A., M.
,
2017
, “
Miniaturized Surgical Robotic Instruments Expand the Possibilities of Surgical Interventions
,” Pisa, Italy, accessed Dec. 5, 2017, https://www.prnewswire.com/news-releases/miniaturized-surgical-robotic-instruments-expand-the-possibilities-of-surgical-interventions-662010233.html
90.
LIVSMED
,
2022
, “
Artisential
,” LIVSMED, San Diego, CA, accessed July 18, 2023, https://livsmed.com/eng/sub01/menu_01.html
91.
Jinno
,
M.
,
2019
, “
Simple Noninterference Mechanism Between the Pitch and Yaw Axes for a Wrist Mechanism to Be Employed in Robot-Assisted Laparoscopic Surgery
,”
ROBOMECH J.
,
6
(
1
), p.
1
.10.1186/s40648-019-0129-y
92.
Wu
,
G. C. Y.
,
2019
, “
Towards Robotic Cleft Palate Repair: Development and Characterization of a 3 mm Wrist for the da Vinci Surgical System
,”
M.S. thesis
,
Institute of Biomaterials and Biomedical Engineering, University of Toronto
, Toronto, ON, Canada.https://tspace.library.utoronto.ca/handle/1807/98460
93.
Podolsky
,
D. J.
,
Diller
,
E.
,
Fisher
,
D.
,
Riff
,
K. W. W.
,
Looi
,
T.
,
Drake
,
J.
, and
Forrest
,
C.
,
2019
, “
Utilization of Cable Guide Channels for Compact Articulation Within a Dexterous Three Degrees-of-Freedom Surgical Wrist Design
,”
ASME J. Med. Devices
,
13
(
1
), p.
011003
.10.1115/1.4041591
94.
Yu
,
L.
,
Yan
,
Y.
,
Li
,
C.
, and
Zhang
,
X.
,
2018
, “
Three-Dimensional Nonlinear Force-Sensing Method Based on Double Microgrippers With e-Type Vertical Elastomer for Minimally Invasive Robotic Surgery
,”
Robotica
,
36
(
6
), pp.
865
881
.10.1017/S0263574718000085
95.
Sakes
,
A.
,
Hovland
,
K.
,
Smit
,
G.
,
Geraedts
,
J.
, and
Breedveld
,
P.
,
2018
, “
Design of a Novel 3D-Printed 2-DOF Steerable Electrosurgical Grasper for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
12
(
1
), p.
011007
.10.1115/1.4038561
96.
Kim
,
U.
,
Kim
,
Y. B.
,
Seok
,
D.-Y.
,
So
,
J.
, and
Choi
,
H. R.
,
2016
, “
A New Type of Surgical Forceps Integrated With Three-Axial Force Sensor for Minimally Invasive Robotic Surgery
,” Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (
URAI
), Xi'an, China, Aug. 19–22, pp.
135
137
.10.1109/URAI.2016.7734039
97.
Haraguchi
,
D.
,
Kanno
,
T.
,
Tadano
,
K.
, and
Kawashima
,
K.
,
2015
, “
A Pneumatically Driven Surgical Manipulator With a Flexible Distal Joint Capable of Force Sensing
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2950
2961
.10.1109/TMECH.2015.2415838
98.
Rau
,
A.
,
Frecker
,
M.
,
Mathew
,
A.
, and
Pauli
,
E.
,
2010
, “
Design of a Multifunctional Forceps for Use in Endoscopic Surgery
,”
ASME J. Med. Devices
,
4
(
2
), p.
6
.10.1115/1.3442789
99.
Salle
,
D.
,
Cepolina
,
F.
, and
Bidaud
,
P.
,
2004
, “
Surgery Grippers for Minimally Invasive Heart Surgery
,”
Proceedings of the IEEE International Conference on Intelligent Manipulation and Grasping IMG 04
, Genova, Italy, pp.
1
8
.https://www.researchgate.net/publication/228552476_Surgery_grippers_for_minimally_invasive_heart_surgery
100.
Miyata
,
N.
,
Kobayashi
,
E.
,
Kim
,
D.
,
Masamune
,
K.
,
Sakuma
,
I.
,
Yahagi
,
N.
,
Tsuji
,
T.
,
Inada
,
H.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
2002
, “Micro-Grasping Forceps Manipulator for MR-Guided Neurosurgery,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002
,
T.
Dohi
and
R.
Kikinis
, eds.,
Springer
,
Berlin, Germany
, pp.
107
113
.
101.
Libu George
,
B.
, and
Bharanidaran
,
R.
,
2022
, “
Design of Multifunctional Compliant Forceps for Medical Application
,”
Aust. J. Mech. Eng.
,
20
(
3
), pp.
731
735
.10.1080/14484846.2020.1747151
102.
Fujisawa
,
Y.
,
Kiguchi
,
K.
,
Harada
,
K.
,
Mitsuishi
,
M.
,
Hashizume
,
M.
, and
Arata
,
J.
,
2017
, “
Compact 4dof Robotic Forceps With 3.5 mm in Diameter for Neurosurgery Based on a Synthetic Elastic Structure
,” Proceedings of the 2017 International Symposium on Micro-NanoMechatronics and Human Science (
MHS
), Nagoya, Japan, Dec. 3–6, pp.
1
3
.10.1109/MHS.2017.8305215
103.
Forbrigger
,
C.
,
Lim
,
A.
,
Onaizah
,
O.
,
Salmanipour
,
S.
,
Looi
,
T.
,
Drake
,
J.
, and
Diller
,
E. D.
,
2019
, “
Cable-Less, Magnetically Driven Forceps for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1202
1207
.10.1109/LRA.2019.2894504
104.
Cheong
,
H. R.
,
Teo
,
C. Y.
,
Leow
,
P. L.
,
Lai
,
K. C.
, and
Chee
,
P. S.
,
2018
, “
Wireless-Powered Electroactive Soft Microgripper
,”
Smart Mater. Struct.
,
27
(
5
), p.
055014
.10.1088/1361-665X/aab866
105.
Al Ali
,
M.
,
Al Ali
,
M. S.
,
Abbas
,
R.
, and
Sahib
,
A.
,
2018
, “
Design Micro-Piezoelectric Actuated Gripper for Medical Applications
,” Proceedings of the 6th IIAE
International Conference on Industrial Application Engineering
, Okinawa, Japan, pp.
175
180
.10.12792/iciae2018.036
106.
Rateni
,
G.
,
Cianchetti
,
M.
,
Ciuti
,
G.
,
Menciassi
,
A.
, and
Laschi
,
C.
,
2015
, “
Design and Development of a Soft Robotic Gripper for Manipulation in Minimally Invasive Surgery: A Proof of Concept
,”
Meccanica
,
50
(
11
), pp.
2855
2863
.10.1007/s11012-015-0261-6
107.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
.10.1021/am508621s
108.
Kuo
,
J.-C.
,
Huang
,
H.-W.
,
Tung
,
S.-W.
, and
Yang
,
Y.-J.
,
2014
, “
A Hydrogel-Based Intravascular Microgripper Manipulated Using Magnetic Fields
,”
Sens. Actuators, A
,
211
, pp.
121
130
.10.1016/j.sna.2014.02.028
109.
Khandalavala
,
K.
,
Shimon
,
T.
,
Flores
,
L.
,
Armijo
,
P. R.
, and
Oleynikov
,
D.
,
2020
, “
Emerging Surgical Robotic Technology: A Progression Toward Microbots
,”
Ann. Laparoscopic Endoscopic Surg.
,
5
, p.
3
.10.21037/ales.2019.10.02
110.
Ma
,
R.
,
Wu
,
D.
,
Yan
,
Z.
,
Du
,
Z.
, and
Li
,
G.
,
2010
, “
Research and Development of Micro-Instrument for Laparoscopic Minimally Invasive Surgical Robotic System
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics
, Tianjin, China, Dec. 14–18, pp.
1223
1228
.10.1109/ROBIO.2010.5723503
111.
Center-Valley
,
2018
, “
Olympus 3D/Flexdex® for Minimal Access Surgery Simplifies Suturing, Redefines Robotics
,” Center Valley, PA, Oct. 18, 2018, https://www.prnewswire.com/news-releases/olympus-3dflexdex-for-minimal-access-surgery-simplifies-suturing-redefines-robotics-300733568.html
112.
Olympus
,
2018
, “
Olympus 3D/Flexdex for Minimal Access Surgery Simplifies Suturing, Redefines Robotics
,” Olympus, Center Valley, PA, accessed Oct. 18, 2018, https://medical.olympusamerica.com/articles/olympus-3dflexdex%C2%AE-minimal-access-surgery-simplifies-suturing-redefines-robotics
113.
Bowden
,
K.
,
2018
, “
Robotic-Like Suturing Without a Robotic Surgical System
,” Lasin, MI, accessed July 18, 2023, https://flexdex.com/wp-content/uploads/2018/04/bowden_sages_2018_8.5x11_v1.1.pdf
114.
Vigneswaran
,
H. T.
,
2017
, “
Flexdex™: A Novel Articulated Laparoscopic Instrument to Perform Renorrhaphy
,”
Exp. Tech. Urol. Nephrol.
,
1
(
2
), pp. 1–3.10.31031/ETUN.2017.01.000506
115.
Nakagawa
,
T.
,
Tomioka
,
Y.
,
Toyazaki
,
T.
, and
Gotoh
,
M.
,
2018
, “
Clinical Experience of Thoracoscopic Sleeve Lobectomy Using a Novel Needle Holder
,”
Semin. Thorac. Cardiovasc. Surg.
,
30
(
3
), pp.
381
383
.10.1053/j.semtcvs.2018.07.001
116.
FlexDex-Surgical,
2021
, “
Robotic Functionality. Minus the Robot
,” Brighton, MI, accessed July 18, 2023, https://flexdex.com/wp-content/uploads/2021/07/FlexDex-needle-driver-brochure-2021.pdf
117.
MMI-S.p.A.
,
2020
, “
MMI SpA Launches Breakthrough Technology, Advancing Robotic Microsurgery With the World's Smallest Wristed Surgical Instruments
,” MMI-S.p.A., Pisa, Italy, accessed July 18, 2023, https://www.mmimicro.com/
118.
Min
,
S.
,
Cho
,
Y.-S.
,
Park
,
K. C.
,
Lee
,
Y.
,
Park
,
Y. S.
,
Ahn
,
S.-H.
,
Park
,
D. J.
, and
Kim
,
H.-H.
,
2019
, “
Multi-DOF (Degree of Freedom) Articulating Laparoscopic Instrument Is an Effective Device in Performing Challenging Sutures
,”
J. Minimally Invasive Surg.
,
22
(
4
), pp.
157
163
.10.7602/jmis.2019.22.4.157
119.
Orsini
,
F.
,
Vurchio
,
F.
,
Scorza
,
A.
,
Crescenzi
,
R.
, and
Sciuto
,
S. A.
,
2018
, “
An Image Analysis Approach to Microgrippers Displacement Measurement and Testing
,”
Actuators
,
7
(
4
), p.
64
.10.3390/act7040064
You do not currently have access to this content.