Abstract

Deep brain stimulation (DBS) is a treatment for several neurological disorders including Parkinson's disease, essential tremor, and epilepsy. The neurosurgical procedure involves implanting a lead of electrodes to a deep brain target and thereafter electrically stimulating that target to suppress symptoms. To reduce the probability of intracranial bleeding during implantation, neurosurgeons carefully plan out a patient-specific lead trajectory that avoids passing the lead through regions with major blood vessels. This process can be tedious, and there is a need to provide neurosurgeons with a more efficient and quantitative means to identify major blood vessels on a patient-specific basis. Here, we developed a modular graphical user interface (GUI) containing anatomically segmented digital reconstructions of patient vasculature, cortex, and deep brain target anatomy from preoperative high-field (3T and 7T) MRI. The system prompts users to identify the deep brain target, and then algorithmically calculates a log-scale blood vessel density along the length of potential lead trajectories that pivot around the deep brain target. Heatmaps highlighting regions with low blood vessel density were calculated for cortical and subcortical vasculature models. The modeling framework enabled users to further interact with the models by panning, rotating, zooming, showing, or hiding the various anatomical reconstructions and heatmaps. Providing surgeons with quantitative, patient specific vasculature data has the potential to further reduce the likelihood of hemorrhage events during microelectrode mapping and DBS lead implantation.

References

1.
Camalier
,
C. R.
,
Konrad
,
P. E.
,
Gill
,
C. E.
,
Kao
,
C.
,
Remple
,
M. R.
,
Nasr
,
H. M.
,
Davis
,
T. L.
,
Hedera
,
P.
,
Phibbs
,
F. T.
,
Molinari
,
A. L.
,
Neimat
,
J. S.
, and
Charles
,
D.
,
2014
, “
Methods for Surgical Targeting of the STN in Early-Stage Parkinson's Disease
,”
Front. Neurol.
,
5
, Article No. 25.10.3389/fneur.2014.00025
2.
Amon
,
A.
, and
Alesch
,
F.
,
2017
, “
Systems for Deep Brain Stimulation: Review of Technical Features
,”
J. Neural Transm.
,
124
(
9
), pp.
1083
1091
.10.1007/s00702-017-1751-6
3.
Bériault
,
S.
,
Subaie
,
F. A.
,
Collins
,
D. L.
,
Sadikot
,
A. F.
, and
Pike
,
G. B.
,
2012
, “
A Multi-Modal Approach to Computer-Assisted Deep Brain Stimulation Trajectory Planning
,”
Int. J. Cars
,
7
(
5
), pp.
687
704
.10.1007/s11548-012-0768-4
4.
Abosch
,
A.
,
Yacoub
,
E.
,
Ugurbil
,
K.
, and
Harel
,
N.
,
2010
, “
An Assessment of Current Brain Targets for Deep Brain Stimulation Surgery With Susceptibility-Weighted Imaging at 7 Tesla
,”
Neurosurgery
,
67
(
6
), pp.
1745
1756
.10.1227/NEU.0b013e3181f74105
5.
Duchin
,
Y.
,
Shamir
,
R. R.
,
Patriat
,
R.
,
Kim
,
J.
,
Vitek
,
J. L.
,
Sapiro
,
G.
, and
Harel
,
N.
,
2018
, “
Patient-Specific Anatomical Model for Deep Brain Stimulation Based on 7 Tesla MRI
,”
PLoS One
,
13
(
8
), p.
e0201469
.10.1371/journal.pone.0201469
6.
Lee
,
D. J.
,
Lozano
,
C. S.
,
Dallapiazza
,
R. F.
, and
Lozano
,
A. M.
,
2019
, “
Current and Future Directions of Deep Brain Stimulation for Neurological and Psychiatric Disorders: JNSPG 75th Anniversary Invited Review Article
,”
J. Neurosurg.
,
131
(
2
), pp.
333
342
.10.3171/2019.4.JNS181761
7.
Balami
,
J. S.
, and
Buchan
,
A. M.
,
2012
, “
Complications of Intracerebral Haemorrhage
,”
Lancet Neurol.
,
11
(
1
), pp.
101
118
.10.1016/S1474-4422(11)70264-2
8.
Liu
,
Y.
,
Dawant
,
B. M.
,
Pallavaram
,
S.
,
Neimat
,
J. S.
,
Konrad
,
P. E.
,
D'Haese
,
P.-F.
,
Datteri
,
R. D.
,
Landman
,
B. A.
, and
Noble
,
J. H.
III
,
2012
, “
A Surgeon Specific Automatic Path Planning Algorithm for Deep Brain Stimulation
,”
D. R.
Holmes
and
K. H.
Wong
, eds.,
San Diego, CA
, p.
83161D
. eds.
9.
Wang
,
X.
,
Li
,
N.
,
Li
,
J.
,
Kou
,
H.
,
Wang
,
J.
,
Jing
,
J.
,
Su
,
M.
,
Li
,
Y.
,
Qu
,
L.
, and
Wang
,
X.
,
2022
, “
Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion
,”
Brain Sci.
,
12
(
8
), p.
967
.10.3390/brainsci12080967
10.
MATLAB Release,
2020
, “MATLAB,”
The MathWorks, Inc.
,
Natick, MA
.
11.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
, et al.,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
12.
Izzo
,
R.
,
Steinman
,
D.
,
Manini
,
S.
, and
Antiga
,
L.
,
2018
, “
The Vascular Modeling Toolkit: A Python Library for the Analysis of Tubular Structures in Medical Images
,”
JOSS
,
3
(
25
), p.
745
.10.21105/joss.00745
13.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), p.
1097
.10.1007/s11517-008-0420-1
14.
Piccinelli
,
M.
,
Veneziani
,
A.
,
Steinman
,
D. A.
,
Remuzzi
,
A.
, and
Antiga
,
L.
,
2009
, “
A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms
,”
IEEE Trans. Med. Imaging
,
28
(
8
), pp.
1141
1155
.10.1109/TMI.2009.2021652
15.
Pinter
,
C.
,
Lasso
,
A.
, and
Fichtinger
,
G.
,
2019
, “
Polymorph Segmentation Representation for Medical Image Computing
,”
Comput. Methods Prog. Biomed.
,
171
, pp.
19
26
.10.1016/j.cmpb.2019.02.011
16.
Frangi
,
A. F.
,
Niessen
,
W. J.
,
Vincken
,
K. L.
, and
Viergever
,
M. A.
,
1998
, “
Multiscale Vessel Enhancement Filtering
,”
Medical Image Computing and Computer-Assisted Intervention — MICCAI'98
,
W. M.
Wells
,
A.
Colchester
, and
S.
Delp
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
130
137
.
17.
Segonne
,
F.
,
Dale
,
A. M.
,
Busa
,
E.
,
Glessner
,
M.
,
Salat
,
D.
,
Hahn
,
H. K.
, and
Fischl
,
B.
,
2004
, “
A Hybrid Approach to the Skull Stripping Problem in MRI
,”
NeuroImage
,
22
(
3
), pp.
1060
1075
.10.1016/j.neuroimage.2004.03.032
18.
Sled
,
J. G.
,
Zijdenbos
,
A. P.
, and
Evans
,
A. C.
,
1998
, “
A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data
,”
IEEE Trans. Med. Imaging
,
17
(
1
), pp.
87
97
.10.1109/42.668698
19.
Desikan
,
R. S.
,
Ségonne
,
F.
,
Fischl
,
B.
,
Quinn
,
B. T.
,
Dickerson
,
B. C.
,
Blacker
,
D.
,
Buckner
,
R. L.
, et al.,
2006
, “
An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral Based Regions of Interest
,”
NeuroImage
,
31
(
3
), pp.
968
980
.10.1016/j.neuroimage.2006.01.021
20.
Fischl
,
B.
,
Liu
,
A.
, and
Dale
,
A. M.
,
2001
, “
Automated Manifold Surgery: Constructing Geometrically Accurate and Topologically Correct Models of the Human Cerebral Cortex
,”
IEEE Med. Imaging
,
20
(
1
), pp.
70
80
.10.1109/42.906426
21.
Fischl
,
B.
,
van der Kouwe
,
A.
,
Destrieux
,
C.
,
Halgren
,
E.
,
Ségonne
,
F.
,
Salat
,
D. H.
,
Busa
,
E.
, et al.,
2004
, “
Automatically Parcellating the Human Cerebral Cortex
,”
Cereb. Cortex
,
14
(
1
), pp.
11
22
.10.1093/cercor/bhg087
22.
Reuter
,
M.
, and
Fischl
,
B.
,
2011
, “
Avoiding Asymmetry-Induced Bias in Longitudinal Image Processing
,”
NeuroImage
,
57
(
1
), pp.
19
21
.10.1016/j.neuroimage.2011.02.076
23.
Dale
,
A.
,
Fischl
,
B.
, and
Sereno
,
M. I.
,
1999
, “
Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction
,”
NeuroImage
,
9
(
2
), pp.
179
194
.10.1006/nimg.1998.0395
24.
Fischl
,
B.
,
Sereno
,
M. I.
, and
Dale
,
A.
,
1999
, “
Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System
,”
NeuroImage
,
9
(
2
), pp.
195
207
.10.1006/nimg.1998.0396
25.
Segonne
,
F.
,
Pacheco
,
J.
, and
Fischl
,
B.
,
2007
, “
Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops
,”
IEEE Trans. Med. Imaging
,
26
(
4
), pp.
518
529
.10.1109/TMI.2006.887364
26.
Fischl
,
B.
,
Sereno
,
M. I.
,
Tootell
,
R. B. H.
, and
Dale
,
A. M.
,
1999
, “
High-Resolution Intersubject Averaging and a Coordinate System for the Cortical Surface
,”
Human Brain Mapp.
,
8
(
4
), pp.
272
284
.10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
27.
Reuter
,
M.
,
Rosas
,
H. D.
, and
Fischl
,
B.
,
2010
, “
Highly Accurate Inverse Consistent Registration: A Robust Approach
,”
NeuroImage
,
53
(
4
), pp.
1181
1196
.10.1016/j.neuroimage.2010.07.020
28.
Fischl
,
B.
, and
Dale
,
A. M.
,
2000
, “
Measuring the Thickness of the Human Cerebral Cortex From Magnetic Resonance Images
,”
Proc. Natl. Acad. Sci. U. S. A.
,
97
(
20
), pp.
11050
11055
.10.1073/pnas.200033797
29.
Rosas
,
H. D.
,
Liu
,
A. K.
,
Hersch
,
S.
,
Glessner
,
M.
,
Ferrante
,
R. J.
,
Salat
,
D. H.
,
van der Kouwe
,
A.
,
Jenkins
,
B. G.
,
Dale
,
A. M.
, and
Fischl
,
B.
,
2002
, “
Regional and Progressive Thinning of the Cortical Ribbon in Huntington's Disease
,”
Neurology
,
58
(
5
), pp.
695
701
.10.1212/WNL.58.5.695
30.
Kuperberg
,
G. R.
,
Broome
,
M.
,
McGuire
,
P. K.
,
David
,
A. S.
,
Eddy
,
M.
,
Ozawa
,
F.
,
Goff
,
D.
, et al.,
2003
, “
Regionally Localized Thinning of the Cerebral Cortex in Schizophrenia
,”
Arch. Gen. Psychiatry
,
60
(
9
), pp.
878
888
.10.1001/archpsyc.60.9.878
31.
Jovicich
,
J.
,
Czanner
,
S.
,
Greve
,
D.
,
Haley
,
E.
,
Kouwe
,
A.
,
van der
,
Gollub
,
R.
,
Kennedy
,
D.
, et al.,
2006
, “
Reliability in Multi-Site Structural MRI Studies: Effects of Gradient Non-Linearity Correction on Phantom and Human Data
,”
NeuroImage
,
30
(
2
), pp.
436
443
.10.1016/j.neuroimage.2005.09.046
32.
Han
,
X.
,
Jovicich
,
J.
,
Salat
,
D.
,
van der Kouwe
,
A.
,
Quinn
,
B.
,
Czanner
,
S.
,
Busa
,
E.
, et al.,
2006
, “
Reliability of MRI-Derived Measurements of Human Cerebral Cortical Thickness: The Effects of Field Strength, Scanner Upgrade and Manufacturer
,”
NeuroImage
,
32
(
1
), pp.
180
194
.10.1016/j.neuroimage.2006.02.051
33.
Fischl
,
B.
,
Salat
,
D. H.
,
Kouwe
,
A. J. W. V. D.
,
Makris
,
N.
,
Ségonne
,
F.
,
Quinn
,
B. T.
, and
Dale
,
A. M.
,
2004
, “
Sequence-Independent Segmentation of Magnetic Resonance Images
,”
NeuroImage
,
23
(
Suppl 1
), pp.
S69
S84
.10.1016/j.neuroimage.2004.07.016
34.
Salat
,
D.
,
Buckner
,
R. L.
,
Snyder
,
A. Z.
,
Greve
,
D. N.
,
Desikan
,
R. S.
,
Busa
,
E.
,
Morris
,
J. C.
,
Dale
,
A.
, and
Fischl
,
B.
,
2004
, “
Thinning of the Cerebral Cortex in Aging
,”
Cerebral Cortex
,
14
(
7
), pp.
721
730
.10.1093/cercor/bhh032
35.
Fischl
,
B.
,
Salat
,
D. H.
,
Busa
,
E.
,
Albert
,
M.
,
Dieterich
,
M.
,
Haselgrove
,
C.
,
van der Kouwe
,
A.
, et al.,
2002
, “
Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain
,”
Neuron
,
33
(
3
), pp.
341
355
.10.1016/S0896-6273(02)00569-X
36.
Reuter
,
M.
,
Schmansky
,
N. J.
,
Rosas
,
H. D.
, and
Fischl
,
B.
,
2012
, “
Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis
,”
NeuroImage
,
61
(
4
), pp.
1402
1418
.10.1016/j.neuroimage.2012.02.084
37.
Liu
,
C.-F.
,
Hsu
,
J.
,
Xu
,
X.
,
Kim
,
G.
,
Sheppard
,
S. M.
,
Miller
,
M. I.
,
Hillis
,
A. E.
, and
Faria
,
A. V.
, “
Digital 3D Brain MRI Arterial Territories Atlas
,”
bioRxiv
, 2021.05.03.442478.10.1101/2021.05.03.442478
38.
Schirmer
,
M. D.
,
Giese
,
A.-K.
,
Fotiadis
,
P.
,
Etherton
,
M. R.
,
Cloonan
,
L.
,
Viswanathan
,
A.
,
Greenberg
,
S. M.
,
Wu
,
O.
, and
Rost
,
N. S.
,
2019
, “
Spatial Signature of White Matter Hyperintensities in Stroke Patients
,”
Front. Neurol.
,
10
, p.
208
.10.3389/fneur.2019.00208
You do not currently have access to this content.