Abstract

The present study proposes a novel model that establishes the relationship between the bending moment and the curvature of a steerable catheter. The catheters exhibit a nonlinear viscoelastic tendency, so the moment-curvature relationship is modeled as a bending of a quasi-linear viscoelastic (QLV) cantilever beam. Stress relaxation tests with multiple magnitudes are performed on a catheter, and the parameter tuning is carried out with the test results to find out the coefficients of the model. The form of the instantaneous moment response, which is an important term within the QLV equation, is selected as a logarithmic form by analyzing the test results. This differentiates the accuracy of the model from using the commonly used exponential form. The performance of the logarithmic QLV model is compared to the conventional models by checking the curvature range each model can cover with a certain accuracy. The covering range for elastic, linear viscoelastic, and exponential QLV models are 22.1%, 64.4%, and 55.5%, respectively, whereas the covering range of the logarithmic QLV model is 100%.

References

1.
Petersen
,
J.
,
Delaney
,
J. H.
,
Brakstad
,
M. T.
,
Rowbotham
,
R. K.
, and
Bagley
,
C. M.
,
1999
, “
Silicone Venous Access Devices Positioned With Their Tips High in the Superior Vena Cava Are More Likely to Malfunction
,”
Am. J. Surg.
,
178
(
1
), pp.
38
41
.10.1016/S0002-9610(99)00124-5
2.
Ryu
,
J.
,
Ahn
,
H. Y.
,
Kim
,
H. Y.
, and
Ahn
,
J. H.
,
2019
, “
Analysis and Simulation of Large Deflection of a Multi-Segmented Catheter Tube Under Wire Tension
,”
J. Mech. Sci. Technol.
,
33
(
3
), pp.
1305
1310
.10.1007/s12206-019-0231-3
3.
Fung
,
Y. C.
,
1993
,
Biomechanics
,
Springer
, New York.
4.
Khoshnam
,
M.
,
Azizian
,
M.
, and
Patel
,
R. V.
,
2012
, “
Modeling of a Steerable Catheter Based on Beam Theory
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
, May 14–18, pp.
4681
4686
.10.1109/ICRA.2012.6224784
5.
Ganji
,
Y.
, and
Janabi-Sharifi
,
F.
,
2009
, “
Catheter Kinematics for Intracardiac Navigation
,”
IEEE Trans. Biomed. Eng.
,
56
(
3
), pp.
621
632
.10.1109/TBME.2009.2013134
6.
Khoshnam
,
M.
, and
Patel
,
R. V.
,
2016
, “
Tendon-Sheath Analysis for Modeling and Control of Steerable Ablation Catheters
,” IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Banff, AB, Canada
, July 12–15, pp.
1585
1590
.10.1109/AIM.2016.7576996
7.
Lai
,
W.
,
Cao
,
L.
,
Tan
,
R. X.
,
Tan
,
Y. C.
,
Li
,
X.
,
Phan
,
P. T.
,
Tiong
,
A. M. H.
, et al.,
2020
, “
An Integrated Sensor-Model Approach for Haptic Feedback of Flexible Endoscopic Robots
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
342
356
.10.1007/s10439-019-02352-8
8.
Li
,
X.
,
Cao
,
L.
,
Tiong
,
A. M. H.
,
Phan
,
P. T.
, and
Phee
,
S. J.
,
2019
, “
Distal-End Force Prediction of Tendon-Sheath Mechanisms for Flexible Endoscopic Surgical Robots Using Deep Learning
,”
Mechanism Mach. Theory
,
134
, pp.
323
337
.10.1016/j.mechmachtheory.2018.12.035
9.
Lai
,
W.
,
Cao
,
L.
,
Xu
,
Z.
,
Phan
,
P. T.
,
Shum
,
P.
, and
Phee
,
S. J.
,
2018
, “
Distal End Force Sensing With Optical Fiber Bragg Gratings for Tendon-Sheath Mechanisms in Flexible Endoscopic Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
),
Brisbane, QLD
, May 21–25, pp.
5349
5255
.10.1109/ICRA.2018.8461090
10.
Hu
,
X.
,
Cao
,
L.
,
Luo
,
Y.
,
Chen
,
A.
,
Zhang
,
E.
, and
Zhang
,
W. J.
,
2019
, “
A Novel Methodology for Comprehensive Modeling of the Kinetic Behavior of Steerable Catheters
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1785
1797
.10.1109/TMECH.2019.2928786
11.
Kato
,
Y.
,
Krosawa
,
S.
, and
Ueda
,
M.
,
2012
, “
Visco-Elastic Properties of Catheter Reinforced With Braids: Stress Relaxation Under Two-Stage Step Strain for Different Deformation Paths
,”
AMR
,
622-623
, pp.
1330
1334
.10.4028/www.scientific.net/AMR.622-623.1330
12.
Kato
,
Y.
, and
Ueda
,
M.
,
2013
, “
Stress Relaxation Behavior of Catheter Reinforced With Braid Under Combined Loading for Bending and Torsion
,”
AMM
,
372
, pp.
261
264
.10.4028/www.scientific.net/AMM.372.261
13.
Kato
,
Y.
,
2013
, “
Creep Behavior of Catheter Reinforced With Braids: Analytical Simulation of Uniaxial Tension Under Two-Stage Step Stress
,”
AMR
,
856
, pp.
384
388
.10.4028/www.scientific.net/AMR.856.384
14.
Ryu
,
J.
,
Ahn
,
J. H.
,
Yoon
,
D.
, and
Kim
,
H. Y.
,
2021
, “
Design of Directional Stiffness Catheter for Enhancing Target Accessibility
,”
J. Mech. Sci. Technol.
,
35
(
12
), pp.
5781
5786
.10.1007/s12206-021-0047-9
15.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge; New York
.
16.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
, and
Chong
,
C. K.
,
2006
, “
Viscoelasticity of Esophageal Tissue and Application of a QLV Model
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
909
916
.10.1115/1.2372473
17.
Xu
,
F.
,
Seffen
,
K.
, and
Lu
,
T.
,
2008
, “
A Quasi-Linear Viscoelastic Model for Skin Tissue
,”
Proceedings of the 3rd IASME/WSEAS International Conference on Continuum Mechanics
, Cambridge, UK, Feb. 23–25, pp.
14
21
.https://www.researchgate.net/publication/267374108_A_Quasi-Linear_Viscoelastic_Model_for_Skin_Tissue
18.
Abramowitch
,
S. D.
, and
Woo
,
S. L.-Y.
,
2004
, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
92
97
.10.1115/1.1645528
19.
Muliana
,
A.
, and
Rajagopal
,
K. R.
,
2012
, “
Modeling the Response of Nonlinear Viscoelastic Biodegradable Polymeric Stents
,”
Int. J. Solids Struct.
,
49
(
7–8
), pp.
989
1000
.10.1016/j.ijsolstr.2011.12.007
20.
Ryu
,
J.
,
Ahn
,
J. H.
,
Kim
,
H. Y.
, and
Ahn
,
H. Y.
,
2020
, “
Effect of Overhang and Stiffness on Accessibility of Catheter Tip to Lung Defects Under Surgical Constraints
,”
Ann. Transl. Med.
,
8
(
5
), pp.
169
169
.10.21037/atm.2020.02.22
You do not currently have access to this content.