Abstract

Ovarian follicle cryopreservation is a promising strategy for fertility preservation; however, cryopreservation protocols have room for improvement to maximize post-thaw follicle viability and quality. Current slow-freezing protocols use either manual ice-seeding in combination with expensive programmable-rate freezers or other clinically incompatible ice initiators to control the ice-seeding temperature in the extracellular solution, a critical parameter that impacts post-cryopreservation cell/tissue quality. Previously, sand has been shown to be an excellent, biocompatible ice initiator, and its use in cryopreservation of human induced pluripotent stem cells enables high cell viability and quality after cryopreservation. This study applies sand as an ice initiator to cryopreserve multicellular microtissue, preantral ovarian follicles, using a simple slow-freezing protocol in the mouse model. Ovarian follicles cryopreserved using the sand partially embedded in polydimethylsiloxane (PDMS) film to seed ice in the extracellular solution exhibit healthy morphology, high viability, and the ability to grow similarly to fresh follicles in culture post-thaw. This sand-based cryopreservation strategy can facilitate convenient ovarian follicle cryopreservation using simple equipment, and this study further demonstrates the translatability of this strategy to not only single cells but also multicellular tissues.

References

1.
Donnez
,
J.
, and
Dolmans
,
M.-M.
,
2017
, “
Fertility Preservation in Women
,”
New Engl. J. Med.
,
377
(
17
), pp.
1657
1665
.10.1056/NEJMra1614676
2.
Loren
,
A. W.
,
Mangu
,
P. B.
,
Beck
,
L. N.
,
Brennan
,
L.
,
Magdalinski
,
A. J.
,
Partridge
,
A. H.
,
Quinn
,
G.
,
Wallace
,
W. H.
, and
Oktay
,
K.
,
2013
, “
Fertility Preservation for Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update
,”
J. Clin. Oncol.
,
31
(
19
), pp.
2500
2510
.10.1200/JCO.2013.49.2678
3.
Gosden
,
R. G.
,
2005
, “
Prospects for Oocyte Banking and In Vitro Maturation
,”
J. Natl. Cancer Inst. Monogr.
,
2005
(
34
), pp.
60
63
.10.1093/jncimonographs/lgi007
4.
Wallace
,
W. H.
,
Anderson
,
R. A.
, and
Irvine
,
D. S.
,
2005
, “
Fertility Preservation for Young Patients With Cancer: Who Is at Risk and What Can Be Offered?
,”
Lancet Oncol.
,
6
(
4
), pp.
209
218
.10.1016/S1470-2045(05)70092-9
5.
Deepinder
,
F.
, and
Agarwal
,
A.
,
2008
, “
Technical and Ethical Challenges of Fertility Preservation in Young Cancer Patients
,”
Reprod. Biomed. Online
,
16
(
6
), pp.
784
791
.10.1016/S1472-6483(10)60143-5
6.
Hussein
,
R. S.
,
Khan
,
Z.
, and
Zhao
,
Y.
,
2020
, “
Fertility Preservation in Women: Indications and Options for Therapy
,”
Mayo Clin. Proc.
,
95
(
4
), pp.
770
783
.10.1016/j.mayocp.2019.10.009
7.
Gracia
,
C. R.
,
Chang
,
J.
,
Kondapalli
,
L.
,
Prewitt
,
M.
,
Carlson
,
C. A.
,
Mattei
,
P.
,
Jeffers
,
S.
, and
Ginsberg
,
J. P.
,
2012
, “
Ovarian Tissue Cryopreservation for Fertility Preservation in Cancer Patients: Successful Establishment and Feasibility of a Multidisciplinary Collaboration
,”
J. Assisted Reprod. Genet.
,
29
(
6
), pp.
495
502
.10.1007/s10815-012-9753-7
8.
Dolmans
,
M. M.
,
Marinescu
,
C.
,
Saussoy
,
P.
,
Van Langendonckt
,
A.
,
Amorim
,
C.
, and
Donnez
,
J.
,
2010
, “
Reimplantation of Cryopreserved Ovarian Tissue From Patients With Acute Lymphoblastic Leukemia Is Potentially Unsafe
,”
Blood
,
116
(
16
), pp.
2908
2914
.10.1182/blood-2010-01-265751
9.
He
,
X.
,
2017
, “
Microfluidic Encapsulation of Ovarian Follicles for 3D Culture
,”
Ann. Biomed. Eng.
,
45
(
7
), pp.
1676
1684
.10.1007/s10439-017-1823-7
10.
Grynberg
,
M.
,
Poulain
,
M.
,
Sebag-Peyrelevade
,
S.
,
Le Parco
,
S.
,
Fanchin
,
R.
, and
Frydman
,
N.
,
2012
, “
Ovarian Tissue and Follicle Transplantation as an Option for Fertility Preservation
,”
Fertil. Steril.
,
97
(
6
), pp.
1260
1268
.10.1016/j.fertnstert.2012.04.042
11.
Xu
,
M.
,
Banc
,
A.
,
Woodruff
,
T. K.
, and
Shea
,
L. D.
,
2009
, “
Secondary Follicle Growth and Oocyte Maturation by Culture in Alginate Hydrogel Following Cryopreservation of the Ovary or Individual Follicles
,”
Biotechnol. Bioeng.
,
103
(
2
), pp.
378
386
.10.1002/bit.22250
12.
Amorim
,
C. A.
,
Rondina
,
D.
,
Rodrigues
,
A. P.
,
Goncalves
,
P. B.
,
de Figueiredo
,
J. R.
, and
Giorgetti
,
A.
,
2004
, “
Cryopreservation of Isolated Ovine Primordial Follicles With Propylene Glycol and Glycerol
,”
Fertil. Steril.
,
81
(
Suppl. 1
), pp.
735
740
.10.1016/j.fertnstert.2003.07.022
13.
Huang
,
H.
,
He
,
X.
, and
Yarmush
,
M. L.
,
2021
, “
Advanced Technologies for the Preservation of Mammalian Biospecimens
,”
Nat. Biomed. Eng.
,
5
(
8
), pp.
793
804
.10.1038/s41551-021-00784-z
14.
Park
,
J. Y.
,
Lee
,
D.-W.
,
Lee
,
S.
,
Lee
,
D.-M.
,
Lee
,
J.
,
Park
,
H.-S.
, and
Yoon
,
G.-S.
,
2022
, “
Comparison of Temperature Equilibrium Rate and Cell Growth/Viability Under Air Circulation in Cryogenic Storage Container
,”
ASME J. Med. Devices
,
16
(
4
), p.
041003
.10.1115/1.4054833
15.
Hood
,
R. L.
, and
Rubinsky
,
B.
,
2020
, “
Medical Devices for Economically Disadvantaged People and Populations: Perspective Problems and Prospective Solutions
,”
ASME J. Med. Devices
,
14
(
1
), p.
010301
.10.1115/1.4046008
16.
Franks
,
F.
, and
Jones
,
M.
,
1987
, “
Biophysics and Biochemistry at Low Temperatures
,”
FBS Lett.
,
220
(
2
), p.
391
.10.1016/0014-5793(87)80854-2
17.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5–6
), pp.
355
422
.10.1615/CritRevBiomedEng.v31.i56.10
18.
Huang
,
H.
,
Choi
,
J. K.
,
Rao
,
W.
,
Zhao
,
S.
,
Agarwal
,
P.
,
Zhao
,
G.
, and
He
,
X.
,
2015
, “
Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification
,”
Adv. Funct. Mater.
,
25
(
44
), pp.
6839
6850
.10.1002/adfm.201503047
19.
He
,
X.
,
2011
, “
Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification
,”
Open Biomed. Eng. J.
,
5
(
1
), pp.
47
73
.10.2174/1874120701105010047
20.
Huang
,
H.
,
Zhao
,
G.
,
Zhang
,
Y.
,
Xu
,
J.
,
Toth
,
T. L.
, and
He
,
X.
,
2017
, “
Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation
,”
ACS Biomater. Sci. Eng.
,
3
(
8
), pp.
1758
1768
.10.1021/acsbiomaterials.7b00201
21.
Mazur
,
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.-Cell Physiol.
,
247
(
3
), pp.
C125
C142
.10.1152/ajpcell.1984.247.3.C125
22.
Kleinhans
,
F. W.
,
1998
, “
Membrane Permeability Modeling: Kedem–Katchalsky versus a Two-Parameter Formalism
,”
Cryobiology
,
37
(
4
), pp.
271
289
.10.1006/cryo.1998.2135
23.
Diller
,
K. R.
,
1982
, “
Quantitative Low Temperature Optical Microscopy of Biological Systems
,”
J. Microsc.
,
126
(
1
), pp.
9
28
.10.1111/j.1365-2818.1982.tb00354.x
24.
Zavos
,
P. M.
, and
Graham
,
E. F.
,
1983
, “
Effects of Various Degrees of Supercooling and Nucleation Temperatures on Fertility of Frozen Turkey Spermatozoa
,”
Cryobiology
,
20
(
5
), pp.
553
559
.10.1016/0011-2240(83)90043-3
25.
Morris
,
G. J.
, and
Acton
,
E.
,
2013
, “
Controlled Ice Nucleation in Cryopreservation—A Review
,”
Cryobiology
,
66
(
2
), pp.
85
92
.10.1016/j.cryobiol.2012.11.007
26.
Trad
,
F. S.
,
Toner
,
M.
, and
Biggers
,
J. D.
,
1999
, “
Effects of Cryoprotectants and Ice-Seeding Temperature on Intracellular Freezing and Survival of Human Oocytes
,”
Hum. Reprod.
,
14
(
6
), pp.
1569
1577
.10.1093/humrep/14.6.1569
27.
Morris
,
C. E.
,
Georgakopoulos
,
D. G.
, and
Sands
,
D. C.
,
2004
, “
Ice Nucleation Active Bacteria and Their Potential Role in Precipitation
,”
J. Phys. IV (Proc.)
,
121
, pp.
87
103
.10.1051/jp4:2004121004
28.
Maki
,
L. R.
,
Galyan
,
E. L.
,
Chang-Chien
,
M.-M.
, and
Caldwell
,
D. R.
,
1974
, “
Ice Nucleation Induced by Pseudomonas syringae
,”
Appl. Microbiol.
,
28
(
3
), pp.
456
459
.10.1128/am.28.3.456-459.1974
29.
Kleinhans
,
F. W.
,
Guenther
,
J. F.
,
Roberts
,
D. M.
, and
Mazur
,
P.
,
2006
, “
Analysis of Intracellular Ice Nucleation in Xenopus Oocytes by Differential Scanning Calorimetry
,”
Cryobiology
,
52
(
1
), pp.
128
138
.10.1016/j.cryobiol.2005.10.008
30.
Jin
,
B.
,
Seki
,
S.
,
Paredes
,
E.
,
Qiu
,
J.
,
Shi
,
Y.
,
Zhang
,
Z.
,
Ma
,
C.
, et al.,
2016
, “
Intracellular Ice Formation in Mouse Zygotes and Early Morulae vs. Cooling Rate and Temperature-Experimental vs. Theory
,”
Cryobiology
,
73
(
2
), pp.
181
186
.10.1016/j.cryobiol.2016.07.014
31.
Jiang
,
B.
,
Li
,
W.
,
Stewart
,
S.
,
Ou
,
W.
,
Liu
,
B.
,
Comizzoli
,
P.
, and
He
,
X.
,
2021
, “
Sand-Mediated Ice Seeding Enables Serum-Free Low-Cryoprotectant Cryopreservation of Human Induced Pluripotent Stem Cells
,”
Bioact. Mater.
,
6
(
12
), pp.
4377
4388
.10.1016/j.bioactmat.2021.04.025
32.
Jewgenow
,
K.
, and
Göritz
,
F.
,
1995
, “
The Recovery of Preantral Follicles From Ovaries of Domestic Cats and Their Characterisation Before and After Culture
,”
Anim. Reprod. Sci.
,
39
(
4
), pp.
285
297
.10.1016/0378-4320(95)01397-I
33.
Kim
,
E. J.
,
Lee
,
J.
,
Youm
,
H. W.
,
Kim
,
S. K.
,
Lee
,
J. R.
,
Suh
,
C. S.
, and
Kim
,
S. H.
,
2018
, “
Comparison of Follicle Isolation Methods for Mouse Ovarian Follicle Culture In Vitro
,”
Reprod. Sci.
,
25
(
8
), pp.
1270
1278
.10.1177/1933719117737851
34.
Laronda
,
M. M.
,
Duncan
,
F. E.
,
Hornick
,
J. E.
,
Xu
,
M.
,
Pahnke
,
J. E.
,
Whelan
,
K. A.
,
Shea
,
L. D.
, and
Woodruff
,
T. K.
,
2014
, “
Alginate Encapsulation Supports the Growth and Differentiation of Human Primordial Follicles Within Ovarian Cortical Tissue
,”
J. Assisted Reprod. Genet.
,
31
(
8
), pp.
1013
1028
.10.1007/s10815-014-0252-x
35.
Amorim
,
C. A.
,
Van Langendonckt
,
A.
,
David
,
A.
,
Dolmans
,
M. M.
, and
Donnez
,
J.
,
2008
, “
Survival of Human Pre-Antral Follicles After Cryopreservation of Ovarian Tissue, Follicular Isolation and In Vitro Culture in a Calcium Alginate Matrix
,”
Hum. Reprod.
,
24
(
1
), pp.
92
99
.10.1093/humrep/den343
36.
Ladanyi
,
C.
,
Mor
,
A.
,
Christianson
,
M. S.
,
Dhillon
,
N.
, and
Segars
,
J. H.
,
2017
, “
Recent Advances in the Field of Ovarian Tissue Cryopreservation and Opportunities for Research
,”
J. Assisted Reprod. Genet.
,
34
(
6
), pp.
709
722
.10.1007/s10815-017-0899-1
37.
Ellen
,
C. R. L.
,
Carolina
,
M. L.
, and
Christiani
,
A. A.
,
2018
, “
Cryopreservation of Preantral Follicles
,”
Cryopreservation Biotechnology in Biomedical and Biological Sciences
,
B.
Yusuf
, ed.,
IntechOpen
,
Rijeka, Croatia
, Chap.
5
.
38.
Gavish
,
Z.
,
Spector
,
I.
,
Peer
,
G.
,
Schlatt
,
S.
,
Wistuba
,
J.
,
Roness
,
H.
, and
Meirow
,
D.
,
2018
, “
Follicle Activation Is a Significant and Immediate Cause of Follicle Loss After Ovarian Tissue Transplantation
,”
J. Assisted Reprod. Genet.
,
35
(
1
), pp.
61
69
.10.1007/s10815-017-1079-z
39.
Cho
,
E.
,
Kim
,
Y. Y.
,
Noh
,
K.
, and
Ku
,
S. Y.
,
2019
, “
A New Possibility in Fertility Preservation: The Artificial Ovary
,”
J. Tissue Eng. Regener. Med.
,
13
(
8
), pp.
1294
1315
.10.1002/term.2870
40.
Laronda
,
M. M.
,
Rutz
,
A. L.
,
Xiao
,
S.
,
Whelan
,
K. A.
,
Duncan
,
F. E.
,
Roth
,
E. W.
,
Woodruff
,
T. K.
, and
Shah
,
R. N.
,
2017
, “
A Bioprosthetic Ovary Created Using 3D Printed Microporous Scaffolds Restores Ovarian Function in Sterilized Mice
,”
Nat. Commun.
,
8
(
1
), p.
15261
.10.1038/ncomms15261
41.
Yang
,
Q.
,
Zhu
,
L.
, and
Jin
,
L.
,
2020
, “
Human Follicle In Vitro Culture Including Activation, Growth, and Maturation: A Review of Research Progress
,”
Front. Endocrinol. (Lausanne)
,
11
, p.
548
.10.3389/fendo.2020.00548
42.
Soares
,
M.
,
Sahrari
,
K.
,
Amorim
,
C. A.
,
Saussoy
,
P.
,
Donnez
,
J.
, and
Dolmans
,
M. M.
,
2015
, “
Evaluation of a Human Ovarian Follicle Isolation Technique to Obtain Disease-Free Follicle Suspensions Before Safely Grafting to Cancer Patients
,”
Fertil. Steril.
,
104
(
3
), pp.
672
680.e2
.10.1016/j.fertnstert.2015.05.021
43.
Rodgers
,
R. J.
,
Irving-Rodgers
,
H. F.
, and
Russell
,
D. L.
,
2003
, “
Extracellular Matrix of the Developing Ovarian Follicle
,”
Reproduction
,
126
(
4
), pp.
415
424
.10.1530/rep.0.1260415
44.
Kometas
,
M.
,
Christman
,
G. M.
,
Kramer
,
J.
, and
Rhoton-Vlasak
,
A.
,
2021
, “
Methods of Ovarian Tissue Cryopreservation: Is Vitrification Superior to Slow Freezing?—Ovarian Tissue Freezing Methods
,”
Reprod. Sci.
,
28
(
12
), pp.
3291
3302
.10.1007/s43032-021-00591-6
45.
Chian
,
R. C.
,
Wang
,
Y.
, and
Li
,
Y. R.
,
2014
, “
Oocyte Vitrification: Advances, Progress and Future Goals
,”
J. Assisted Reprod. Genet.
,
31
(
4
), pp.
411
420
.10.1007/s10815-014-0180-9
46.
Tian
,
C.
,
Shen
,
L.
,
Gong
,
C.
,
Cao
,
Y.
,
Shi
,
Q.
, and
Zhao
,
G.
,
2022
, “
Microencapsulation and Nanowarming Enables Vitrification Cryopreservation of Mouse Preantral Follicles
,”
Nat. Commun.
,
13
(
1
), p.
7515
.10.1038/s41467-022-34549-2
47.
Lopes
,
E. P. F.
,
Rodrigues
,
G. Q.
,
de Brito
,
D. C. C.
,
Rocha
,
R. M. P.
,
Ferreira
,
A. C. A.
,
de Sa
,
N. A. R.
,
Silva
,
R. F. D.
, et al.,
2020
, “
Vitrification of Caprine Secondary and Early Antral Follicles as a Perspective to Preserve Fertility Function
,”
Reprod. Biol.
,
20
(
3
), pp.
371
378
.10.1016/j.repbio.2020.05.001
48.
Vanacker
,
J.
,
Luyckx
,
V.
,
Amorim
,
C.
,
Dolmans
,
M. M.
,
Van Langendonckt
,
A.
,
Donnez
,
J.
, and
Camboni
,
A.
,
2013
, “
Should We Isolate Human Preantral Follicles Before or After Cryopreservation of Ovarian Tissue?
,”
Fertil. Steril.
,
99
(
5
), pp.
1363
1368.e2
.10.1016/j.fertnstert.2012.12.016
49.
Isachenko
,
V.
,
Isachenko
,
E.
,
Reinsberg
,
J.
,
Montag
,
M.
,
Braun
,
F.
, and
van der Ven
,
H.
,
2008
, “
Cryopreservation of Human Ovarian Tissue: Effect of Spontaneous and Initiated Ice Formation
,”
Reprod. Biomed. Online
,
16
(
3
), pp.
336
345
.10.1016/S1472-6483(10)60593-7
50.
Zhang
,
J. M.
,
Sheng
,
Y.
,
Cao
,
Y. Z.
,
Wang
,
H. Y.
, and
Chen
,
Z. J.
,
2011
, “
Effects of Cooling Rates and Ice-Seeding Temperatures on the Cryopreservation of Whole Ovaries
,”
J. Assisted Reprod. Genet.
,
28
(
7
), pp.
627
633
.10.1007/s10815-011-9557-1
51.
Weng
,
L.
,
Stott
,
S. L.
, and
Toner
,
M.
,
2019
, “
Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation
,”
Annu. Rev. Biomed. Eng.
,
21
(
1
), pp.
1
31
.10.1146/annurev-bioeng-060418-052130
52.
Lovelock
,
J. E.
, and
Bishop
,
M. W.
,
1959
, “
Prevention of Freezing Damage to Living Cells by Dimethyl Sulphoxide
,”
Nature
,
183
(
4672
), pp.
1394
1395
.10.1038/1831394a0
53.
Yu
,
Z. W.
, and
Quinn
,
P. J.
,
1994
, “
Dimethyl Sulphoxide: A Review of Its Applications in Cell Biology
,”
Biosci. Rep.
,
14
(
6
), pp.
259
281
.10.1007/BF01199051
54.
Camboni
,
A.
,
Van Langendonckt
,
A.
,
Donnez
,
J.
,
Vanacker
,
J.
,
Dolmans
,
M. M.
, and
Amorim
,
C. A.
,
2013
, “
Alginate Beads as a Tool to Handle, Cryopreserve and Culture Isolated Human Primordial/Primary Follicles
,”
Cryobiology
,
67
(
1
), pp.
64
69
.10.1016/j.cryobiol.2013.05.002
55.
Shea
,
L. D.
,
Woodruff
,
T. K.
, and
Shikanov
,
A.
,
2014
, “
Bioengineering the Ovarian Follicle Microenvironment
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
29
52
.10.1146/annurev-bioeng-071813-105131
56.
Choi
,
J. K.
,
Agarwal
,
P.
,
Huang
,
H.
,
Zhao
,
S.
, and
He
,
X.
,
2014
, “
The Crucial Role of Mechanical Heterogeneity in Regulating Follicle Development and Ovulation With Engineered Ovarian Microtissue
,”
Biomaterials
,
35
(
19
), pp.
5122
5128
.10.1016/j.biomaterials.2014.03.028
57.
Brito
,
I. R.
,
Lima
,
I. M.
,
Xu
,
M.
,
Shea
,
L. D.
,
Woodruff
,
T. K.
, and
Figueiredo
,
J. R.
,
2014
, “
Three-Dimensional Systems for In Vitro Follicular Culture: Overview of Alginate-Based Matrices
,”
Reprod. Fertil. Dev.
,
26
(
7
), pp.
915
930
.10.1071/RD12401
58.
Zhang
,
W.
,
Yang
,
G.
,
Zhang
,
A.
,
Xu
,
L. X.
, and
He
,
X.
,
2010
, “
Preferential Vitrification of Water in Small Alginate Microcapsules Significantly Augments Cell Cryopreservation by Vitrification
,”
Biomed. Microdevices
,
12
(
1
), pp.
89
96
.10.1007/s10544-009-9363-z
59.
Zhang
,
Y.
,
Wang
,
H.
,
Stewart
,
S.
,
Jiang
,
B.
,
Ou
,
W.
,
Zhao
,
G.
, and
He
,
X.
,
2019
, “
Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation
,”
Nano Lett.
,
19
(
12
), pp.
9051
9061
.10.1021/acs.nanolett.9b04109
You do not currently have access to this content.