Robot-assisted surgery is characterized by a total loss of haptic feedback, requiring surgeons to rely solely on visual cues. A pneumatically-driven balloon actuator array, suitable for mounting on robotic surgical master controls, has been developed to provide haptic feedback to surgeons. The actuator arrays consist of a molded polydimethylsiloxane substrate with cylindrical channels and a spin-coated silicone film that forms the array of balloons. Preliminary human perceptual studies have demonstrated that balloon diameters greater than 1.0mm may provide effective haptic feedback to the index finger. Before conducting further human perceptual tests, refinements of the fabrication process and performance data of the actuator are required. Balloons with diameters ranging between 1.5mm and 4.0mm were fabricated with film thicknesses of 200μm and 300μm. Inflation pressure versus balloon deflection tests and cyclic actuation tests were performed to characterize each balloon type. The results demonstrated a high linearity between inflation pressure and balloon deflection (R2>0.93) and negligible hysteresis effects between inflation and deflation over 100,000cycles. The studies indicated that 300μm films are optimal for 3.0mm and 4.0mm diameter balloons, and 200μm films are optimal for 1.5mm, 2.0mm, and 2.5mm diameter balloons. Due to its compact size and high performance, the described pneumatic actuator can provide sensory input that is otherwise unavailable during robotic surgery.

1.
Satava
,
R. M.
, 2002, “Surgical Robotics: The Early Chronicles: A Personal Historical Perspective,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 12(
1
), pp. 6–16.
2.
Himpens
,
J.
,
Leman
,
G.
, and
Cadiere
,
G. B.
, 1998, “
Telesurgical Laparoscopic Cholecystectomy
,”
Surg. Endosc
0930-2794,
12
(
8
), p.
1091
.
3.
Marescaux
,
J.
,
Smith
,
M.
,
Folscher
,
D.
,
Jamali
,
F.
,
Malassagne
,
B.
, and
Leroy
,
J.
, 2001, “
Telerobotic Laparoscopic Cholecystectomy: Initial Clinical Experience With 25 Patients
,”
Ann. Surg.
0003-4932,
234
(
1
), pp.
1
7
.
4.
Lanfranco
,
A.
,
Castellanos
,
A.
,
Desai
,
J.
, and
Meyers
,
W.
, 2004, “
Robotic Surgery—A Current Perspective
,”
Ann. Surg.
0003-4932,
239
(
1
), pp.
14
21
.
5.
Vallbo
,
A. B.
, and
Johansson
,
R. S.
, 1984, “
Properties of Cutaneous Mechanoreceptors in the Human Hand Related to Touch Sensation
,”
Hum. Neurobiol.
0721-9075,
3
(
1
), pp.
3
14
.
6.
Goodwin
,
A. W.
,
Macefield
,
V. G.
, and
Bisley
,
J. W.
, 1997, “
Encoding of Object Curvature by Tactile Afferents From Human Fingers
,”
J. Neurophysiol.
0022-3077,
78
(
6
), pp.
2881
2888
.
7.
Brown
,
J. D.
,
Rosen
,
J.
,
Chang
,
L.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2005, “
Quantifying Surgeon Grasping Mechanics in Laparoscopy Using the Blue DRAGON System
,”
Stud. Health Technol. Inform.
0926-9630,
119
, pp.
349
354
.
8.
Marescaux
,
J.
,
Leroy
,
J.
,
Gagner
,
M.
,
Rubino
,
F.
,
Mutter
,
D.
,
Vix
,
M.
,
Butner
,
S. E.
, and
Smith
,
M. K.
, 2001, “
Transatlantic Robot-Assisted Telesurgery
,”
Nature (London)
0028-0836,
413
(
6854
), pp.
379
80
.
9.
Fukuda
,
T.
,
Morita
,
H.
,
Arai
,
F.
,
Ishihara
,
H.
, and
Matsuura
,
H.
, 1997, “
Micro Resonator Using Electromagnetic Actuator for Tactile Display
,”
Proceedings of the International Symposium on Micromechatronics and Human Science
, pp.
143
148
.
10.
Kajimoto
,
H.
,
Kawakami
,
N.
,
Maeda
,
T.
, and
Tachi
,
S.
, 2001, “
Electrocutaneous Display as an Interface to a Virtual Tactile World
,”
Proceedings of the IEEE Virtual Reality
, pp.
289
290
.
11.
Tang
,
H.
, and
Beebe
,
D. J.
, 1998, “
A Microfabricated Electrostatic Haptic Display for Persons With Visual Impairments
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
6
(
3
), pp.
241
248
.
12.
Wagner
,
C. R.
,
Lederman
,
S.
, and
Howe
,
R. D.
, 2002, “
A Tactile Shape Display Using RC Servomotors
,”
Proceedings of the 10th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’02)
, pp.
354
355
.
13.
Ikei
,
Y.
,
Wakamatsu
,
K.
, and
Fukuda
,
S.
, 1997, “
Texture Presentation by Vibratory Tactile Display-Image Based Presentation of a Tactile Texture
,”
Proceedings of the IEEE Virtual Reality Annual International Symposium
, pp.
199
205
.
14.
Taylor
,
P. M.
,
Hosseini-Sianaki
,
A.
, and
Varley
,
C. J.
, 1996, “
An Electrorheological Fluid-Based Tactile Array for Virtual Environments
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
18
23
.
15.
Kontarinis
,
D. A.
,
Son
,
J. S.
,
Peine
,
W.
, and
Howe
,
R. D.
, 1995, “
A Tactile Shape Sensing and Display System for Teleoperated Manipulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
641
646
.
16.
Sato
,
K.
,
Igarashi
,
E.
, and
Kimura
,
M.
, 1991, “
Development of Non-Constrained Master Arm With Tactile Feedback Device
,”
Fifth International Conference on Advanced Robotics (91 ICAR)
, pp.
334
338
.
17.
Cohn
,
M. B.
,
Lam
,
M.
, and
Fearing
,
R. S.
, 1992, “
Tactile Feedback for Teleoperation
,”
Proceedings of SPIE on Telemanipulator Technology
, pp.
240
255
.
18.
Caldwell
,
D. G.
,
Tsagarakis
,
N.
, and
Giesler
,
C.
, 1999, “
An Integrated Tactile/Shear Feedback Array for Stimulation of Finger Mechanoreceptor
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
287
292
.
19.
Moy
,
G.
,
Wagner
,
C.
, and
Fearing
,
R. S.
, 2000, “
A Compliant Tactile Display for Teletaction, Robotics and Automation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3409
3415
.
20.
Vidal-Verdu
,
F.
,
Madueno
,
M. J.
, and
Navas
,
R.
, 2005, “
Thermopneumatic Actuator for Tactile Displays and Smart Actuation Circuitry
,”
Proc. SPIE
0277-786X,
5836
, pp.
484
492
.
21.
King
,
C. H.
,
Culjat
,
M. O.
,
Franco
,
M. L.
,
Bisley
,
J. W.
,
Dutson
,
E.
, and
Grundfest
,
W. S.
, 2008, “
Optimization of a Pneumatic Balloon Tactile Display for Robotic Surgery Based on Human Perception
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
11
), pp.
2593
2600
.
22.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
, 1990,
Mechanics of Materials
,
PWS-Kent
,
Boston, MA
.
23.
Fan
,
R. E.
,
Culjat
,
M. O.
,
King
,
C. H.
,
Franco
,
M. L.
,
Boryk
,
R.
,
Dutson
,
E.
, and
Grundfest
,
W. S.
, 2008, “
A Haptic Feedback System for Lower-Limb Prostheses
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
16
(
3
), pp.
270
277
.
You do not currently have access to this content.