Two commercially available stents (the Palmaz–Schatz (PS) and S670 stents) with reported high and low restenosis rates, respectively, have been investigated in this paper. Finite element models simulating the stent, plaque, and artery interactions in 3 mm stenosed right coronary arteries were developed. These models were used to determine the stress field in artery walls after stent implantation. The material properties of porcine arteries were measured and implemented in the numerical models. The stress concentration induced in the artery by the PS stent was found to be more than double that of the S670 stent. It demonstrated a good correlation with the reported restenosis rate. The effects of stent structures, compliance mismatch, plaque geometry, and level of stenosis were studied. Results suggested that stent designs and tissue properties cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which impact vessel responses such as restenosis. Appropriate modeling of stent, plaque, and artery interactions provided insights for evaluating alterations to the arterial mechanical environment, as well as biomechanical factors leading to restenosis.

1.
Lloyd-Jones
,
D.
,
Rosamond
,
W.
,
Flegal
,
K.
,
Friday
,
G.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Mcdermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O’Donnell
,
C. J.
,
Roger
,
V.
,
Rumsfeld
,
J.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
, and
Hong
,
Y.
, 2009, “
Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
0009-7322,
119
(
5
), pp.
e1
161
.
2.
Hoffmann
,
R.
,
Mintz
,
G. S.
,
Dussaillant
,
G. R.
,
Popma
,
J. J.
,
Pichard
,
A. D.
,
Satler
,
L. F.
,
Kent
,
K. M.
,
Griffin
,
J.
, and
Leon
,
M. B.
, 1996, “
Patterns and Mechanisms of In-Stent Restenosis. A Serial Intravascular Ultrasound Study
,”
Circulation
0009-7322,
94
(
6
), pp.
1247
1254
.
3.
van der Hoeven
,
B. L.
,
Pires
,
N. M. M.
,
Warda
,
H. M.
,
Oemrawsingh
,
P. V.
,
van Vlijmen
,
B. J. M.
,
Quax
,
P. H. A.
,
Schalij
,
M. J.
,
van Der Wall
,
E. E.
, and
Jukema
,
J. W.
, 2005, “
Drug-Eluting Stents: Results, Promises and Problems
,”
Int. J. Cardiol.
0167-5273,
99
(
1
), pp.
9
17
.
4.
Anis
,
R. R.
, and
Karsch
,
K. R.
, 2006, “
The Future of Drug Eluting Stents
,”
Heart
1355-6037,
92
(
5
), pp.
585
588
.
5.
Steinman
,
D. A.
,
Vorp
,
D. A.
, and
Ethier
,
C. R.
, 2003, “
Computational Modeling of Arterial Biomechanics: Insights Into Pathogenesis and Treatment of Vascular Disease
,”
J. Vasc. Surg.
0741-5214,
37
(
5
), pp.
1118
1128
.
6.
Schwartz
,
E. A.
,
Bizios
,
R.
,
Medow
,
M. S.
, and
Gerritsen
,
M. E.
, 1999, “
Exposure of Human Vascular Endothelial Cells to Sustained Hydrostatic Pressure Stimulates Proliferation. Involvement of the Alphav Integrins
,”
Circ. Res.
0009-7330,
84
(
3
), pp.
315
322
.
7.
Becker
,
G. J.
, 1991, “
Intravascular Stents. General Principles and Status of Lower-Extremity Arterial Applications
,”
Circulation
0009-7322,
83
(
2
), pp.
122
136
.
8.
Oesterle
,
S. N.
,
Whitbourn
,
R.
,
Fitzgerald
,
P. J.
,
Yeung
,
A. C.
,
Stertzer
,
S. H.
,
Dake
,
M. D.
,
Yock
,
P. G.
, and
Virmani
,
R.
, 1998, “
The Stent Decade: 1987 to 1997. Stanford Stent Summit Faculty
,”
Am. Heart J.
0002-8703,
136
(
4
), pp.
578
599
.
9.
Hausleiter
,
J.
,
Kastrati
,
A.
,
Mehilli
,
J.
,
Schuhlen
,
H.
,
Pache
,
J.
,
Dotzer
,
F.
,
Dirschinger
,
J.
, and
Schomig
,
A.
, 2002, “
Predictive Factors for Early Cardiac Events and Angiographic Restenosis After Coronary Stent Placement in Small Coronary Arteries
,”
J. Am. Coll. Cardiol.
0735-1097,
40
(
5
), pp.
882
889
.
10.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schuhlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Neumann
,
F. J.
, and
Schomig
,
A.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
0002-9149,
87
(
1
), pp.
34
39
.
11.
Stone
,
G. W.
, and
Pocock
,
S. J.
, 2010, “
Randomized Trials, Statistics, and Clinical Inference
,”
J. Am. Coll. Cardiol.
,
55
(
5
), pp.
428
431
.
12.
Kirtane
,
A. J.
,
Gupta
,
A.
,
Iyengar
,
S.
,
Moses
,
J. W.
,
Leon
,
M. B.
,
Applegate
,
R.
,
Brodie
,
B.
,
Hannan
,
E.
,
Harjai
,
K.
,
Jensen
,
L. O.
,
Park
,
S. J.
,
Perry
,
R.
,
Racz
,
M.
,
Saia
,
F.
,
Tu
,
J. V.
,
Waksman
,
R.
,
Lansky
,
A. J.
,
Mehran
,
R.
, and
Stone
,
G. W.
, 2009, “
Safety and Efficacy of Drug-Eluting and Bare Metal Stents: Comprehensive Meta-Analysis of Randomized Trials and Observational Studies
,”
Circulation
0009-7322,
119
(
25
), pp.
3198
3206
.
13.
Wentzel
,
J. J.
,
Kloet
,
J.
,
Andhyiswara
,
I.
,
Oomen
,
J. A.
,
Schuurbiers
,
J. C.
,
De Smet
,
B. J.
,
Post
,
M. J.
,
De Kleijn
,
D.
,
Pasterkamp
,
G.
,
Borst
,
C.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2001, “
Shear-Stress and Wall-Stress Regulation of Vascular Remodeling after Balloon Angioplasty: Effect of Matrix Metalloproteinase Inhibition
,”
Circulation
0009-7322,
104
(
1
), pp.
91
96
.
14.
Gourisankaran
,
V.
, and
Sharma
,
M. G.
, 2000, “
The Finite Element Analysis of Stresses in Atherosclerotic Arteries During Balloon Angioplasty
,”
Crit. Rev. Biomed. Eng.
0278-940X,
28
(
1–2
), pp.
47
51
.
15.
Palmaz
,
J. C.
, 1993, “
Intravascular Stents—Tissue-Stent Interactions and Design Considerations
,”
AJR, Am. J. Roentgenol.
0361-803X,
160
(
3
), pp.
613
618
.
16.
Auricchio
,
F.
,
Diloreto
,
M.
, and
Sacco
,
E.
, 2001, “
Finite Element Analysis of a Stenotic Artery Revascularization Through Stent Insertion
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
249
263
.
17.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
, 2005, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
38
(
8
), pp.
1574
1581
.
18.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Auricchio
,
F.
, and
Dubini
,
G.
, 2004, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction With the Vascular Wall
,”
Biomech. Model. Mechanobiol.
1617-7959,
2
(
4
), pp.
205
217
.
19.
Wu
,
W.
,
Qi
,
M.
,
Liu
,
X. P.
,
Yang
,
D. Z.
, and
Wang
,
W. Q.
, 2007, “
Delivery and Release of Nitinol Stent in Carotid Artery and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
40
(
13
), pp.
3034
3040
.
20.
De Beule
,
M.
,
Van Impe
,
R.
,
Verhegghe
,
B.
,
Segers
,
P.
, and
Verdonck
,
P.
, 2006, “
Finite Element Analysis and Stent Design: Reduction of Dogboning
,”
Technol. Health Care
0928-7329,
14
(
4–5
), pp.
233
241
.
21.
De Beule
,
M.
, 2009, “
Biomechanical Modelling of Stents: Survey 1997–2007
,”
Advances in Biomedical Engineering
,
Elsevier
,
Amsterdam, The Netherlands
, Chap. 2.
22.
Berry
,
J. L.
,
Manoach
,
E.
,
Mekkaoui
,
C.
,
Rolland
,
P. H.
,
Moore
,
J. E.
, Jr.
, and
Rachev
,
A.
, 2002, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interv. Radiol.
1051-0443,
13
(
1
), pp.
97
105
.
23.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
757
765
.
24.
Younis
,
G. A.
,
Gupta
,
K.
,
Mortazavi
,
A.
,
Strickman
,
N. E.
,
Krajcer
,
Z.
,
Perin
,
E.
, and
Achari
,
A.
, 2007, “
Predictors of Carotid Stent Restenosis
,”
Catheter. Cardiovasc. Interv.
,
69
(
5
), pp.
673
682
.
25.
Fischman
,
D. L.
,
Leon
,
M. B.
,
Baim
,
D. S.
,
Schatz
,
R. A.
,
Savage
,
M. P.
,
Penn
,
I.
,
Detre
,
K.
,
Veltri
,
L.
,
Ricci
,
D.
,
Nobuyoshi
,
M.
,
Cleman
,
M.
,
Heuser
,
R.
,
Almond
,
D.
,
Teirstein
,
P. S.
,
Fish
,
R. D.
,
Colombo
,
A
,
Brinker
,
J.
,
Moses
,
J.
,
Shaknovich
,
A.
,
Hirshfeld
,
J.
,
Bailey
,
S.
,
Ellis
,
S.
,
Rake
,
R.
, and
Goldberg
,
S.
, 1994, “
A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease. Stent Restenosis Study Investigators
,”
N. Engl. J. Med.
0028-4793,
331
(
8
), pp.
496
501
.
26.
Baim
,
D. S.
,
Flatley
,
M.
,
Caputo
,
R.
,
O’Shaughnessy
,
C.
,
Low
,
R.
,
Fanelli
,
C.
,
Popma
,
J.
,
Fitzgerald
,
P.
, and
Kuntz
,
R.
, 2001, “
Comparison of PRE-Dilatation Vs Direct Stenting In Coronary Treatment Using the Medtronic AVE S670 Coronary Stent System (the PREDICT Trial)
,”
Am. J. Cardiol.
0002-9149,
88
(
12
), pp.
1364
1369
.
27.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
, 2004, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
495
501
.
28.
Topoleski
,
L. D.
,
Salunke
,
N. V.
,
Humphrey
,
J. D.
, and
Mergner
,
W. J.
, 1997, “
Composition- and History-Dependent Radial Compressive Behavior of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
0021-9304,
35
(
1
), pp.
117
127
.
29.
Salunke
,
N. V.
,
Topoleski
,
L. D.
,
Humphrey
,
J. D.
, and
Mergner
,
W. J.
, 2001, “
Compressive Stress-Relaxation of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
0021-9304,
55
(
2
), pp.
236
241
.
30.
Glagov
,
S.
, 1994, “
Intimal Hyperplasia, Vascular Modeling, and the Restenosis Problem
,”
Circulation
0009-7322,
89
(
6
), pp.
2888
2891
.
31.
Glagov
,
S.
,
Bassiouny
,
H. S.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
, 1995, “
Pathobiology of Plaque Modeling and Complication
,”
Surg. Clin. North Am.
0039-6109,
75
(
4
), pp.
545
556
.
32.
Glagov
,
S.
,
Bassiouny
,
H. S.
,
Sakaguchi
,
Y.
,
Goudet
,
C. A.
, and
Vito
,
R. P.
, 1997, “
Mechanical Determinants of Plaque Modeling, Remodeling and Disruption
,”
Atherosclerosis
0021-9150,
131
, pp.
S13
S14
.
33.
Jacobs
,
T. S.
,
Won
,
J.
,
Gravereaux
,
E. C.
,
Faries
,
P. L.
,
Morrissey
,
N.
,
Teodorescu
,
V. J.
,
Hollier
,
L. H.
, and
Marin
,
M. L.
, 2003, “
Mechanical Failure of Prosthetic Human Implants: A 10-Year Experience With Aortic Stent Graft Devices
,”
J. Vasc. Surg.
0741-5214,
37
(
1
), pp.
16
26
.
34.
Garcia-Cardena
,
G.
,
Comander
,
J.
,
Anderson
,
K. R.
,
Blackman
,
B. R.
, and
Gimbrone
,
M. A.
, Jr.
, 2001, “
Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype
,”
Proc. Natl. Acad. Sci.
,
98
(
8
), pp.
4478
4485
.
35.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
, 1994, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
0021-9290,
27
(
2
), pp.
195
204
.
You do not currently have access to this content.