This paper presents a new minimally invasive surgical (MIS) tool design paradigm that enables enhanced dexterity, intuitive control, and natural force feedback in a low-cost compact package. The paradigm is based on creating a tool frame that is attached to the surgeon’s forearm, making the tool shaft an extension of the latter. Two additional wristlike rotational degrees of freedom (DoF) provided at an end-effector that is located at the end of the tool shaft are manually actuated via a novel parallel-kinematic virtual center mechanism at the tool input. The virtual center mechanism, made possible by the forearm-attached tool frame, creates a virtual two-DoF input joint that is coincident with the surgeon’s wrist, allowing the surgeon to rotate his/her hand with respect to his/her forearm freely and naturally. A cable transmission associated with the virtual center mechanism captures the surgeon’s wrist rotations and transmits them to the two corresponding end-effector rotations. This physical configuration allows an intuitive and ergonomic one-to-one mapping of the surgeon’s forearm and hand motions at the tool input to the end-effector motions at the tool output inside the patient’s body. Moreover, a purely mechanical construction ensures low-cost, simple design, and natural force feedback. A functional decomposition of the proposed physical configuration is carried out to identify and design key modules in the system—virtual center mechanism, tool handle and grasping actuation, end-effector and output joint, transmission system, tool frame and shaft, and forearm brace. Development and integration of these modules leads to a proof-of-concept prototype of the new MIS tool, referred to as FlexDex, which is then tested by a focused end-user group to evaluate its performance and obtain feedback for the next stage of technology development.

1.
2006, “
Minimally Invasive Treatment—Technology Assessment
,” Frost & Sullivan Market Report.
2.
2008, “
Minimally Invasive Surgery
,” Kalorama Information Market Report.
3.
Woge
,
L.
, 2008, “
The Evolution of Surgical Systems: Robotics Applied to Medicine
,” Frost & Sullivan Market Report.
4.
Frank
,
T. G.
,
Hanna
,
G. B.
, and
Cuschieri
,
A.
, 1997, “
Technological Aspects of Minimal Access Surgery
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
(
2
), pp.
129
144
.
6.
McWilliams
,
A.
, 2006, “
Trends in the Noninvasive and Minimally Invasive Medical Device Market
,” Business Communications Company, Market Report ID No. HLC051D.
7.
Cullen
,
K. A.
,
Hall
,
M. J.
, and
Golosinskiy
,
A.
, 2009, “
Ambulatory Surgery in the United States
,” National Health Statistics Report No. 11.
8.
2008, “
U.S. Image Guided and Robot Assisted Surgery
,” Frost & Sullivan Market Report.
9.
Kia
,
M.
, 2008, “
Understanding Single Port Surgery
,” URL http://www.understandsingleportsurgery.com/http://www.understandsingleportsurgery.com/
10.
Rentschler
,
M. E.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
, 2007, “
Natural Orifice Surgery With an Endoluminal Mobile Robot
,”
Surg. Endosc
0930-2794,
21
, pp.
1212
1215
.
13.
Smith
,
K. W.
,
Slater
,
C. R.
, and
Bales
,
T. O.
, 1992, “
Single Acting Disposable Laparoscopic Scissors
,” Symbosis Corporation (assignee), U.S. Patent No. 5,171,256.
14.
U.S. Surgical (Covidien Division)
, URL http://www.covidien.comhttp://www.covidien.com
15.
Cao
,
C. G. L.
, and
MacKenzie
,
C. L.
, 1996. “
Task and Motion Analyses in Endoscopic Surgery
,”
ASME IMECE Conference Proceedings, Fifth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Atlanta, GA.
16.
Taylor
,
T. E.
, and
Aust
,
G. M.
, 1994, “
Surgical Instrument
,” U.S. Patent No. 5,454,827.
17.
Berkelaar
,
G.
, 1999, “
Laparoscopic Endoscopic Surgical Instrument
,” Misener Medical Co., Inc. (assignee), U.S. Patent No. 5,860,995.
18.
Lee
,
W.
, 2006, “
Surgical Instrument
,” U.S. Patent No. 7,147,650.
19.
Briggs
,
J. M.
, 1990, “
Cable Action Instrument
,” U.S. Patent No. 4,950,273.
20.
RealHand High Dexterity (HD) Instruments, Novare Surgical Systems, Inc., URL http://www.novaresurgical.comhttp://www.novaresurgical.com
21.
Hinman
,
C. D.
, and
Danitz
,
D. J.
, 2004, “
Link Systems and Articulation Mechanisms for Remote Manipulation of Surgical or Diagnostic Tools
,” Novare Surgical Systems, Inc. (assignee), U.S. Patent Application No. 10/928,479.
22.
Autonomy Laparo-Angle Instrumentation, CambridgeEndo, URL http://www.cambridgeendo.comhttp://www.cambridgeendo.com
23.
Nio
,
D.
,
Bemelman
,
W. A.
,
Boer
,
K. T.
,
Dunker
,
M. S.
,
Gouma
,
D. J.
, and
Gulik
,
T. M.
, 2002, “
Efficiency of Manual Versus Robotical (Zeus) Assisted Laparoscopic Surgery in the Performance of Standardized Tasks
,”
Surg. Endosc
0930-2794,
16
(
3
), pp.
412
415
.
24.
Solnik
,
C.
, 2006, “
The Da Vinci Surgical System Helping Surgeons Perform More
, Long Island Business News.
25.
da Vinci Surgical System, Intuitive Surgical, Inc., URL http://www.intuitivesurgical.com/http://www.intuitivesurgical.com/
26.
Wang
,
Y.
,
Vecker
,
D. R.
,
Jordan
,
C. S.
,
Wright
,
J. W.
,
Laby
,
K. P.
, and
Wilson
,
J. D.
, 1999, “
Method and Apparatus for Performing Minimally Invasive Cardiac Procedures
,” Computer Motion, Inc. (assignee), U.S. Patent No. 5,855,583.
27.
Morley
,
T. A.
, and
Wallace
,
D. T.
, 2004, “
Roll-Pitch-Roll Surgical Tool
,” Intuitive Surgical, Inc. (assignee), U.S. Patent No. 6,685,698.
28.
Fogarty
,
K.
, 2010, “
Why Surgical Robotics Is Unstoppable
,” URL http://www.roboticsbusinessreview.comhttp://www.roboticsbusinessreview.com
29.
Krupa
,
A.
,
Morel
,
G.
, and
de Mathelin
,
M.
, 2004, “
Achieving High-Precision Laparoscopic Manipulation Through Adaptive Force Control
,”
Adv. Rob.
0169-1864,
18
(
9
), pp.
905
926
.
30.
Tadano
,
K.
, and
Kawashima
,
K.
, 2006, “
Development of 4-DOFs Forceps With Force Sensing Using Pneumatic Servo System
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
, Orlando, FL.
31.
Takahashi
,
H.
,
Mitsuishi
,
S. W.
,
Arata
,
J.
, and
Hashizume
,
M.
, 2006, “
Development of High Dexterity Minimally Invasive Surgical System With Augmented Force Feedback Capability
,”
Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
284
289
.
32.
Ben-Ur
,
E.
, and
Salisbury
,
J. K.
, 2000, “
Development of a 5-DOF Force Feedback Laparoscopic Interface for Simulation and Telesurgery
,”
Proceedings of Digitization of the Battlespace V and Battlefield Biomedical Technologies II
.
33.
Amato
,
F.
,
Carnbone
,
M.
,
Cosentino
,
C.
,
Merola
,
A.
,
Morelli
,
M.
, and
Zullo
,
F.
, 2006, “
A Versatile Mechatronic Tool for Minimally Invasive Surgery
.”
Proceedings of the 2006 BioRob Conference
, Pisa, Italy.
34.
Corcione
,
F.
,
Esposito
,
C.
,
Cuccurullo
,
D.
,
Settembre
,
A.
,
Miranda
,
N.
,
Amato
,
F.
,
Pirozzi
,
F.
, and
Caiazzo
,
P.
, 2005, “
Advantages and Limits of Robot-Assisted Laparoscopic Surgery: Preliminary Experience
,”
Surg. Endosc
0930-2794,
19
(
1
), pp.
117
119
.
35.
Wexner
,
S. D.
,
Bergamaschi
,
R.
,
Lacy
,
A.
,
Udo
,
J.
,
Brolmann
,
H.
,
Kennedy
,
R. H.
, and
John
,
H.
, 2009, “
The Current Status of Robotic Pelvic Surgery: Results of a Multinational Interdisciplinary Consensus Conference
,”
Surg. Endosc
0930-2794,
23
(
2
), pp.
438
443
.
36.
Amodeo
,
A.
,
Linares
,
Q. A.
,
Joseph
,
J. V.
,
Belgrano
,
E.
, and
Patel
,
H. R.
, 2009, “
Robotic Laparoscopic Surgery: Cost and Training
,”
Minerva Urol. Nefrol
0393-2249,
61
(
2
), pp.
121
8
.
37.
Blanding
,
D. K.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York, NY
.
38.
Trejo
,
A. E.
,
Doné
,
K. N.
,
DiMartino
,
A. A.
,
Oleynikov
,
D.
, and
Hallbeck
,
M. S.
, 2006, “
Articulating vs. Conventional Laparoscopic Grasping Tools—Surgeons’ Opinions
,”
Int. J. Ind. Ergonom.
0169-8141,
36
, pp.
25
35
.
39.
van Veelen
,
M. A.
,
Meijer
,
D. W.
,
Goossens
,
R. H. M.
, and
Snijders
,
C. J.
, 2001, “
New Ergonomic Design Criteria for Handles of Laparoscopic Dissection Forceps
,”
J. Laparoendosc Adv. Surg. Tech. A
1092-6429,
11
(
1
), pp.
17
26
.
40.
DiMartino
,
A.
,
Judkins
,
T. N.
,
Done
,
K.
,
Morse
,
J.
,
Melander
,
J.
,
Hallbeck
,
M. S.
, and
Oleynikov
,
D.
, 2006, “
Ergonomic Laparoscopic Tool Handle Design
,”
Human Factors and Ergonomics Society Annual Meeting Proceedings, Industrial Ergonomics
, Vol.
36
, pp.
1354
1358
.
41.
Lee
,
W.
, and
Chamorro
,
A.
, 2008, “
Surgical Instrument
,” U.S. Patent No. 7,338,513.
42.
Awtar
,
S.
,
Mansfield
,
A. B.
,
Quigley
,
P.
,
Nielsen
,
J. M.
,
Geiger
,
J. D.
,
Trutna
,
T. T.
, and
Abani
,
R.
, 2009, “
Minimal Access Tool
,” University of Michigan Invention Disclosure No. 3864 (2007), U.S. Provisional Patent Application No. 61/044,168 (2008), International Patent Application No. PCT/US2009/040352.
43.
Awtar
,
S.
,
Trutna
,
T.
,
Abani
,
R.
,
Nielsen
,
J. M.
, and
Mansfield
,
A. B.
, 2009, “
Flex-Dex: A Minimally Invasive Surgical Tool with Enhanced Dexterity and Intuitive Actuation
,”
Proceedings of ASME IDETC/CIE 2009
, San Diego, CA, Paper No. 87824.
You do not currently have access to this content.