We propose distinct element method modeling of carbon nanotube systems. The atomic-level description of an individual nanotube is coarse-grained into a chain of spherical elements that interact by parallel bonds located at their contacts. The spherical elements can lump multiple translational unit cells of the carbon nanotube and have both translational and rotational degrees of freedom. The discrete long ranged interaction between nanotubes is included in a van der Waals contact of nonmechanical nature that acts simultaneously with the parallel bonds. The created mesoscopic model is put into service by simulating a realistic carbon nanotube ring. The ring morphology arises from the energy balance stored in both parallel and van der Waals bonds.

1.
Dumitrică
,
T.
,
Hua
,
M.
, and
Yakobson
,
B.
, 2006, “
Symmetry-, Time-, and Temperature-Dependent Strength of Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
16
), pp.
6105
6109
.
2.
Yakobson
,
B.
,
Brabec
,
C.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
(
14
), pp.
2511
2514
.
3.
Zhang
,
D. -B.
, and
Dumitrică
,
T.
, 2008, “
Elasticity of Ideal Single-Walled Carbon Nanotubes via Symmetry-Adapted Tight-Binding Objective Modeling
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
031919
.
4.
Zhang
,
D. -B.
,
James
,
R.
, and
Dumitrică
,
T.
, 2009, “
Electromechanical Characterization of Carbon Nanotubes in Torsion via Symmetry Adapted Tight-Binding Objective Molecular Dynamics
,”
Phys. Rev. B
0556-2805,
80
(
11
), p.
115418
.
5.
Nikiforov
,
I.
,
Zhang
,
D. -B.
,
James
,
R.
, and
Dumitrică
,
T.
, 2010, “
Wavelike Rippling in Multiwalled Carbon Nanotubes Under Pure Bending
,”
Appl. Phys. Lett.
0003-6951,
96
, p.
123107
.
6.
Buehler
,
M.
,
Kong
,
Y.
, and
Gao
,
H.
, 2004, “
Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
3
), pp.
245
249
.
7.
Zhigilei
,
L.
,
Wei
,
C.
, and
Srivastava
,
D.
, 2005, “
Mesoscopic Model for Dynamic Simulations of Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
71
(
16
), p.
165417
.
8.
Duan
,
W. H.
,
Wang
,
Q.
,
Wang
,
Q.
, and
Liew
,
K. M.
, 2010, “
Modeling the Instability of Carbon Nanotubes: From Continuum Mechanics to Molecular Dynamics
,”
J. Nanotechnol. Eng. Med.
,
1
(
1
), p.
011001
.
9.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2003, “
Nonlinear Mechanical Response and Rippling of Thick Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
91
(
21
), p.
215505
.
10.
Pantano
,
A.
,
Boyce
,
M.
, and
Parks
,
D.
, 2003, “
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
,”
Phys. Rev. Lett.
0031-9007,
91
(
14
), p.
145504
.
11.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
,
Jayanthi
,
C.
,
Tang
,
M.
, and
Wu
,
S. -Y.
, 2000, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature (London)
0028-0836,
405
, pp.
769
772
.
12.
2001,
Polymer Nanocomposites: Processing, Characterization, and Applications
,
R.
Vaia
and
R.
Krishnamoorti
, eds.,
American Chemical Society
,
Washington, D.C.
13.
Poland
,
C.
,
Duffin
,
R.
,
Kinloch
,
I.
,
Maynard
,
A.
,
Wallace
,
A. H.
,
Seaton
,
A.
,
Stone
,
V.
,
Brown
,
S.
,
MacNee
,
W.
, and
Donaldson
,
K.
, 2008, “
Carbon Nanotubes Introduced Into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study
,”
Nat. Nanotechnol.
1748-3387,
3
, pp.
423
428
.
14.
Hoogerbrugge
,
P.
, and
Koelman
,
J.
, 1992, “
Simulation Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
0295-5075,
19
(
3
), pp.
155
160
.
15.
Smith
,
D.
, and
Harris
,
C.
, 1990, “
Generalized Brownian Dynamics. I. Numerical Integration of the Generalized Langevin Equation Through Autoregressive Modeling of the Memory Function
,”
J. Chem. Phys.
0021-9606,
92
(
2
), pp.
1304
1311
.
16.
Cundall
,
P.
, and
Strack
,
O.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
(
1
), pp.
47
65
.
17.
Potyondy
,
D.
, and
Cundall
,
P.
, 2004, “
A Bonded-Particle Model for Rock
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
41
(
8
), pp.
1329
1364
.
18.
Itasca Consulting Group Inc.
, 2008, PFC3D (Particle Flow Code in 3 Dimensions), Version 4.0. Minneapolis: ICG.
19.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
0021-9991,
117
(
1
), pp.
1
19
.
20.
2010,
Trends in Computational Nanomechanics: Transcending Length and Time Scales
,
T.
Dumitrică
, ed.,
Springer
,
New York
.
21.
Girifalco
,
L.
,
Hodak
,
M.
, and
Lee
,
R.
, 2000, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
0556-2805,
62
(
19
), pp.
13104
13110
.
22.
Martel
,
R.
,
Shea
,
H. R.
, and
Avouris
,
P.
, 1999, “
Rings of Single-Walled Carbon Nanotubes
,”
Nature (London)
0028-0836,
398
, p.
299
.
You do not currently have access to this content.