Swimming in micro/nano domains is a challenge and involves a departure from standard methods of propulsion, which are effective at macrodomains. Flagella based propulsion is seen extensively in nature and has been proposed as a means of propelling nanorobots. Natural flagella actively consume energy in order to generate bending moments that sustain constant or increasing amplitude along their length. However, for man-made applications fabricating passive elastic filaments to function as flagella is more feasible. Of the two methods of flagellar propulsion, namely, planar wave and helical wave, the former has been studied from a passive filament point of view, whereas the latter is largely unexplored. In the present work an elastohydrodynamic model of the filament has been created and the same is used to obtain the steady state shape of an elastic filament driven in a Stokes flow regime. A modified resistive force theory, which is very effective in predicting propulsion parameters for a given shape, is used to study the propulsive dynamics of such a filament. The effect of boundary conditions of the filament on determining its final shape and propulsive characteristics are investigated. Optimization of physical parameters is carried out for each of the boundary conditions considered. The same are compared with the planar wave model.

1.
Requicha
,
A. A. G.
, 2003, “
Nanorobots, NEMS, and Nanoassembly
,”
Proc. IEEE
0018-9219,
9
(
11
), pp.
1922
1933
.
2.
Brennen
,
C.
, and
Winet
,
H.
, 1977, “
Fluid Mechanics of Propulsion by Cilia and Flagella
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
(
1
), pp.
339
398
.
3.
Gray
,
J.
, and
Hancock
,
G. J.
, 1955, “
The Propulsion of Sea-Urchin Spermatozoa
,”
J. Exp. Biol.
0022-0949,
32
, pp.
802
814
.
4.
Sharma
,
N. N.
, and
Mittal
,
R. K.
, 2008, “
Nanorobot Movement: Challenges and Biologically Inspired Solutions
,”
Int. J. Smart Sensing and Intelligent Systems
,
1
(
1
), pp.
87
109
.
5.
Rathore
,
J. S.
, and
Sharma
,
N. N.
, 2010, “
“Engineering Nanorobots: Chronology of Modeling Flagellar Propulsion
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
3
), p.
031001
.
6.
Behkam
,
B.
, and
Sitti
,
M.
, 2006, “
Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
1
), pp.
36
43
.
7.
Behkam
,
B.
, and
Sitti
,
M.
, 2005, “
Modeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots
,”
International Conference on Advanced Intelligent Mechatronics Monterey
, CA.
8.
Roper
,
M.
,
Dreyfus
,
R.
,
Baudry
,
J.
,
Fermigier
,
M.
,
Bibette
,
J.
, and
Stone
,
H. A.
, 2008, “
Do Magnetic Micro-Swimmers Move Like Eukaryotic Cells?
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
(
2092
), pp.
877
904
.
9.
Abbott
,
J. J.
,
Peyer
,
K. E.
,
Lagomarsino
,
M. C.
,
Zhang
,
L.
,
Dong
,
L.
,
Kaliakatsos
,
I. K.
, and
Nelson
,
B. J.
, 2009, “
How Should Microrobots Swim?
Int. J. Robot. Res.
0278-3649,
28
(
11–12
), pp.
1434
1447
.
10.
Purcell
,
E. M.
, 1977, “
Life at Low Reynolds Number
,”
Am. J. Phys.
0002-9505,
45
(
1
), pp.
3
11
.
11.
Najafi
,
A.
, and
Golestanian
,
R.
, 2004, “
Simple Swimmer at Low Reynolds Number: Three Linked Spheres
,”
Phys. Rev.
0031-899X,
69
(
6
), p.
062901
.
12.
Taylor
,
G.
, 1951, “
Analysis of the Swimming of Microscopic Organisms
,”
Proc. R. Soc. London, Ser. A
0950-1207,
209
(
1099
), pp.
447
461
.
13.
Taylor
,
G. I.
, 1952, “
The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms
,”
Proc. R. Soc. London, Ser. A
0950-1207,
211
(
1105
), pp.
225
239
.
14.
Johnson
,
R. E.
, and
Brokaw
,
C. J.
, 1979, “
Flagellar Hydrodynamics-A Comparison Between Resistive-Force Theory and Slender-Body Theory
,”
Biophys. J.
0006-3495,
25
(
1
), pp.
113
127
.
15.
Machin
,
K. E.
, 1958, “
Wave Propagation Along Flagella
,”
J. Exp. Biol.
0022-0949,
35
, pp.
796
806
.
16.
Machin
,
K. E.
, 1963, “
The Control and Synchronization of Flagellar Movement
,”
Proc. R. Soc. London, Ser. B
0962-8452,
158
(
970
), pp.
88
104
.
17.
Fujime
,
S.
,
Maruyama
,
M.
, and
Asakura
,
S.
, 1972, “
Flexural Rigidity of Bacterial Flagella Studied by Quasielastic Scattering of Laser Light
,”
J. Mol. Biol.
0022-2836,
68
(
2
), pp.
347
354
.
18.
Hoshikawa
,
H.
, and
Kamiya
,
R.
, 1985, “
Elastic Properties of Bacterial Flagellar Filaments: II. Determination of the Modulus of Rigidity
,”
Biophys. Chem.
0301-4622,
22
(
3
), pp.
159
166
.
19.
Wiggins
,
C. H.
, and
Goldstein
,
R. E.
, 1998, “
Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number
,”
Phys. Rev. Lett.
0031-9007,
80
(
17
), pp.
3879
3882
.
20.
Chwang
,
A. T.
, and
Wu
,
T. Y.
, 1971, “
Helical Movement of Micro-Organisms
,”
Proc. R. Soc. London, Ser. B
0962-8452,
178
(
1052
), pp.
327
346
.
21.
Powers
,
T. R.
, 2002, “
Role of Body Rotation in Bacterial Flagellar Bundling
,”
Phys. Rev. E
1063-651X,
65
(
4
), p.
040903
.
22.
Hancock
,
G. J.
, 1953, “
The Self-Propulsion of Microscopic Organisms Through Liquids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
217
(
1128
), pp.
96
121
.
23.
Lighthill
,
J.
, 1976, “
Flagellar Hydrodynamics
,”
SIAM Rev.
0036-1445,
18
(
2
), pp.
161
230
.
24.
Behkam
,
B.
, and
Sitti
,
M.
, 2004, “
E. Coli Inspired Propulsion for Swimming Microrobots
,”
The International Mechanical Engineering Conference and R&D Exposition
, Anaheim, CA.
You do not currently have access to this content.