Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in a wide variety of applied scientific endeavours, especially for medical devices. Nanocellulose, such as that produced by the bacteria Gluconacetobacter xylinus (bacterial cellulose, BC), is an emerging biomaterial with great potential in flexible radar absorbing materials, in scaffold for tissue regeneration, water treatment, and medical applications. Bacterial cellulose nanofibril bundles have excellent intrinsic properties due to their high crystallinity, which is higher than that generally recorded for macroscale natural fibers and is of the same order as the elastic modulus of glass fibers. Compared with cellulose from plants, BC also possesses higher water holding capacity, higher degree of polymerization (up to 8000), and a finer weblike network. In addition, BC is produced as a highly hydrated and relatively pure cellulose membrane, and therefore no chemical treatments are needed to remove lignin and hemicelluloses, as is the case for plant cellulose. Because of these characteristics, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. This review describes the fundamentals, purification, and morphological investigation of bacterial cellulose. Besides, microbial cellulose modification and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials have been reported. Furthermore, provides deep knowledge of current and future applications of bacterial cellulose and their nanocomposites especially in the medical field.

References

1.
Gatenholm
,
P.
, and
Klemm
,
D.
, 2010, “
Bacterial Nanocellulose as a Renewable Material for Biomedical Applications
,”
MRS Bull.
,
35
, pp.
208
213
.
2.
Czaja
,
W. K.
,
Young
,
D. J.
,
Kawecki
,
M.
, 2007, “
The Future Prospects of Microbial Cellulose in Biomedical Applications
,”
Biomacromolecules
,
8
, pp.
1
12
.
3.
Shoda
,
M.
, and
Sugano
,
Y.
, 2005, “
Recent Advances in Bacterial Cellulose Production
,”
Biotechnol. Bioprocess Eng.
,
10
, pp.
1
8
.
4.
Richmond
,
P. A.
, 1991, “
Occurrence and Functions of Native Cellulose
,”
Biosynthesis and Biodegradation of Cellulose
,
C. H.
Haigler
and
P. J.
Weimer
, eds.,
Marcel Dekker
,
New York
.
5.
Bielecki
,
S.
,
Krystynowicz
,
A.
,
Turkiewicz
,
M.
, and
Kalinowska
,
H.
, 2005, “
Bacterial Cellulose
,”
Polysaccharides and Polyamides in the Food Industry
,
A.
Steinbüchel
and
S. K.
Rhee
, eds.,
Wiley-VCH Verlag
,
Germany
.
6.
Ross
,
P.
,
Mayer
,
R.
, and
Benziman
,
M.
, 1991, “
Cellulose Biosynthesis and Function in Bacteria
,”
Clin. Microbiol. Rev.
,
55
, pp.
35
58
.
7.
Hestrin
,
S.
, and
Schramm
,
M.
, 1954, “
Synthesis of Cellulose by Acetobacter Xylinum 2. Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to Cellulose
,”
Biochem. Eng. J.
,
58
, pp.
345
352
.
8.
Forng
,
E. R.
,
Anderson
,
S. M.
, and
Cannon
,
R. E.
, 1989, “
Synthetic Medium for Acetobacter Xylinum That Can be Used for Isolation of Auxotrophic Mutants and Study of Cellulose Biosynthesis
,”
Appl. Environ. Microbiol.
,
55
, pp.
1317
1319
.
9.
Iguchi
,
M.
,
Yamanaka
,
S.
, and
Budhiono
,
A.
, 2000, “
Bacterial Cellulose – A Masterpiece of Nature’s Arts
,”
Int. J. Eng. Mater. Sci.
,
35
, pp.
261
270
.
11.
Chawla
,
P. R.
,
Bajaj
,
I. B.
,
Survase
,
S. A.
, and
Singhal
,
R. S.
, 2009, “
Fermentative Production of Microbial Cellulose
,”
Food Technol. Biotechnol.
,
47
, pp.
107
124
.
12.
Lynd
,
L. R
,
Weimer
,
P. J.
,
Zyl
,
W. H.
, and
Pretorius
,
I. S.
, 2002, “
Microbial Cellulose Utilization: Fundamentals and Biotechnology
,”
Microbiol. Mol. Biol. Rev.
,
66
(
3
), pp.
506
577
.
13.
Cannon
,
R. E.
, and
Anderson
,
S. M.
, 1991, “
Biogenesis of Bacterial Cellulose
,”
CRC Crit. Rev. Microbiol.
,
17
(
6
), pp.
435
447
.
14.
Ramana
,
K. V.
,
Tomar
,
A.
,
Singh
,
L.
, 2000, “
Effect of Various Carbon and Nitrogen Sources on Cellulose Synthesis by Acetobacter Xylinum
,”
World J. Microbiol. Biotechnol.
,
16
, pp.
245
248
.
15.
Masaoka
,
S.
,
Ohe
,
T.
, and
Sakota
,
N.
, 1993, “
Production of Cellulose From Glucose by Acetobacter Xylinum
,”
J. Ferment. Bioeng.
,
75
, pp.
18
22
.
16.
Son
,
H. J.
,
Kim
,
H. G.
,
Kim
,
K. K.
,
Kim
,
H.-S.
,
Kim
,
Y.-G.
, and
Lee
,
S.-J.
, 2003, “
Increased Production of Bacterial Cellulose by Acetobacter Sp. V6 in Synthetic Media Under Shaking Culture Conditions
,”
Bioresour. Technol.
,
86
, pp.
215
219
.
17.
Matsuoka
,
M.
,
Tsuchida
,
T.
,
Matsushita
,
K.
,
Adachi
,
O.
, and
Yoshinaga
,
A.
, 1996, “
A Synthetic Medium for Bacterial Cellulose Production by Acetobacter Xylinum Subsp. Sucrofermentans
,”
Biosci. Biotechnol. Biochem.
,
60
, pp.
575
579
.
18.
Sani
,
A.
, and
Dahman
,
Y.
, 2010, “
Improvements in the Production of Bacterial Synthesized Biocellulose Nanofibres Using Different Culture Methods
,”
J. Chem. Technol. Biotechnol.
,
85
, pp.
151
164
.
19.
Kongruang
,
S.
, 2008, “
Bacterial Cellulose Production by Acetobacter Xylinum Strains From Agricultural Waste Products
,”
Appl. Biochem. Biotechnol.
,
148
, pp.
245
256
.
20.
Wulf
,
P.
,
Joris
,
K.
, and
Vandamme
,
E. J.
, 1996, “
Improved Cellulose Formation by an Acetobacter Xylinum Mutant Limited in (Keto) Gluconate Synthesis
,”
J. Chem. Technol. Biotechnol.
,
67
, pp.
376
380
.
21.
Sakairi
,
N.
,
Asano
,
H.
,
Ogawa
,
M.
,
Nishi
,
N.
, and
Tokura
,
S.
, 1998, “
A Method for Direct Harvest of Bacterial Cellulose Filaments During Continuous Cultivation of Acetobacter Xylinum
,”
Carbohydr. Polym.
,
35
, pp.
233
237
.
22.
Keshk
,
S. M. A. S.
, and
Sameshima
,
K.
, 2005, “
Evaluation of Different Carbon Sources for Bacterial Cellulose Production
,”
Afr. J. Biotechnol.
,
4
, pp.
478
482
.
23.
Jung
,
J. Y.
,
Park
,
J. K.
,
Chang
,
H. N.
, 2005, “
Bacterial Cellulose Production by Gluconoacetobacter Hansenii in an Agitated Culture Without Living Non-Cellulose Producing Cells
,”
Enzyme Microb. Technol.
,
37
, pp.
347
354
.
24.
Haigler
,
C. H.
,
White
,
A. R.
,
Brown
,
R. M.
, 1982, “
Alteration of In Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives
,”
Am. J. Respir. Cell Mol. Biol.
,
94
, pp.
64
69
.
25.
Cienchanska
,
D.
, 2004, “
Multifunctional Bacterial Cellulose/Chitosan Composite Materials for Medical Applications
,”
Fibres Text East Eur.
,
12
, pp.
69
72
.
26.
Seifert
,
M.
,
Hesse
,
S.
,
Kabrelian
,
V.
, and
Klemm
,
D.
, 2004, “
Controlling the Water Content of Never Dried and Reswollen Bacterial Cellulose by the Addition of Water Soluble Polymers to the Culture Medium
,”
J. Polym. Sci.
,
42
, pp.
463
470
.
27.
Stell
,
G.
, and
Rikvold
,
P. A.
, 1987, “
Polydispersity in Fluids, Dispersions, and Composites; Some Theoretical Results
,”
Chem. Eng. Commun.
,
51
, pp.
233
260
.
28.
Bodin
,
A.
,
Bäckdahl
,
H.
,
Fink
,
H.
,
Gustafsson
,
L.
,
Risberg
,
B.
, and
Gatenholm
,
P.
, 2007, “
Influence of Cultivation Conditions on Mechanical and Morphological Properties of Bacterial Cellulose Tubes
,”
Biotechnol. Bioeng.
,
97
, pp.
425
434
.
29.
Watanabe
,
K.
, and
Yamanaka
,
S.
, 1995, “
Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed Under Static Culture Conditions
,”
Biosci. Biotechnol. Biochem.
,
59
, pp.
65
68
.
30.
Hult
,
E.-L.
,
Yamanaka
,
S.
,
Ishihara
,
M.
,
Sugiyama
,
J.
, 2003, “
Aggregation of Ribbons in Bacterial Cellulose Induced by High Pressure Incubation
,”
Carbohyd. Polym.
,
53
, pp.
9
14
.
31.
Watanabe
,
K.
,
Tabuchi
,
M.
,
Morinaga
,
Y.
, and
Yoshinga
,
F.
, 1998, “
Structural Features and Properties of Bacterial Cellulose Produced in Agitated-Culture
,”
Cellul. Chem. Technol.
,
5
, pp.
187
200
.
32.
Haigler
,
C. H.
,
Brown
,
R. M.
, Jr.
, and
Benziman
,
M.
, 1980, “
Calcofluor White ST Alters the In Vivo Assembly of Cellulose Microfibrils
,”
Science
,
210
, pp.
903
906
.
33.
Tang
,
W.
,
Jia
,
S.
,
Jia
,
Y.
, and
Yang
,
H.
, 2010, “
The Influence of Fermentation Conditions and Post-Treatment Methods on Porosity of Bacterial Cellulose Membrane
,”
World J. Microbiol. Biotechnol.
,
26
, pp.
125
131
.
34.
Bäckdahl
,
H.
,
Esguerra
,
M.
,
Delbro
,
D.
,
Risberg
,
B.
, and
Gatenholm
,
P.
, 2008, “
Engineering Microporosity in Bacterial Cellulose Scaffolds
,”
J. Tissue Eng. Regener. Med.
,
2
, pp.
320
330
.
35.
Grande
,
J. C.
,
Torres
,
F. G.
,
Gomez
,
C. M.
,
Troncoso
,
O. P.
,
Canet-Ferrer
,
J.
, and
Martínez-Pastor
,
J.
, 2009, “
Development of Self-Assembled Bacterial Cellulose–Starch Nanocomposites
,”
Mater. Sci. Eng., C
,
29
, pp.
1098
1104
.
36.
Schrecker
,
S.
, and
Gostomski
,
P.
, 2005, “
Determining the Water Holding Capacity of Microbial Cellulose
,”
Biotechnol. Lett.
,
27
, pp.
1435
1438
.
37.
Orts
,
W. J.
,
Shey
,
J.
,
Imam
,
S. H.
,
Glenn
,
G. M.
,
Guttman
,
M. E.
,
Revol
,
J.-F.
, 2005, “
Application of Cellulose Microfibrils in Polymer Nanocomposites
,”
J. Polym. Environ.
,
13
, pp.
301
306
.
38.
Borges
,
J. P.
,
Godinho
,
M. H.
,
Martins
,
A. F.
,
Trindade
,
A. C.
,
Belgacem
,
M. N.
, 2001, “
Cellulose Based-Composite Films
,”
Mech. Compos. Mater. Struct.
,
37
, pp.
257
264
.
39.
Basmaji
,
P.
, 2010, “
Nanoskin for Medical Application
,”
3er Seminario Internacional de Nanociencias y Nanotecnologías
,
Havana, Cuba
.
40.
Yano
,
S.
,
Keisuke
,
I.
,
Kurita
,
K.
, 1998, “
Physical Properties and Structure of Organic-Inorganic Hybrid Materials Produced by Sol-Gel Process
,”
Mat. Sci. Eng., C
,
6
, pp.
75
90
.
41.
Eichhorn
,
S. J.
,
Baillie
,
C. A.
,
Zafeiropoulos
,
N.
,
Mwaikambo
,
L. Y.
,
Ansell
,
M. P.
,
Dufresne
,
A.
,
Entwistle
,
K. M.
,
Herrera-Franco
,
P. J.
,
Escamilla
,
G. C.
,
Groom
,
L.
,
Hughes
,
M.
,
Hill
,
C.
,
Rials
,
T. G.
, and
Wild
,
P. M.
, 2001, “
Current International Research Into Cellulosic Fibers and Composites
,”
J. Mat. Sci.
,
36
, pp.
2107
2131
.
42.
Nishino
,
T.
,
Matsuda
,
I.
,
Hirao
,
K.
, 2004, “
All Cellulose Composite
,”
Macromolecules
,
37
, pp.
7683
7687
.
43.
Kemell
,
M.
,
Pore
,
V.
,
Ritala
,
M.
,
Leskelä
,
M.
, and
Linden
,
M.
, 2005, “
Atomic Layer Deposition in Nanometer-Level Replication of Cellulosic Substances and Preparation of Photocatalytic TiO2/Cellulose Composites
,”
J. Am. Chem. Soc.
,
127
, pp.
14178
14179
.
44.
Borges
,
J. P.
,
Godinho
,
M. H.
,
Martins
,
A. F.
,
Trinidade
,
A. C.
,
Belgacem
,
M. N.
, 2001, “
Cellulose-Based Composite Films
,”
Mech. Compos. Mater.
,
37
, pp.
257
264
.
45.
Hutchens
,
S. A.
,
Woodward
,
J.
,
Evans
,
B. R.
, and
O’Neill
,
H. M.
, 2002, “
Composite Material
,” U.S. Patent No. US2004096509.
46.
Yano
,
H.
,
Sugiyama
,
J.
,
Nakagaito
,
A. N.
,
Nogi
,
M.
,
Matsuura
,
T.
,
Hikita
,
M.
, and
Handa
,
K.
, 2005, “
Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers
,”
Adv. Mater.
,
17
, pp.
153
155
.
47.
Ifuku
,
S.
,
Nogi
,
M.
,
Abe
,
K.
,
Handa
,
K.
,
Nkatsubo
,
F.
, and
Yano
,
H.
, 2007, “
Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Dependence on Acetyl-Group DS
,”
Biomacromolecules
,
8
, pp.
1973
1978
.
48.
Nakagaito
,
A. N.
,
Iwamoto
,
S.
, and
Yano
,
H.
, 2005, “
Bacterial Cellulose: The Ultimate Nano-Scalar Cellulose Morphology for the Production of High-Strength Composites
,”
Appl. Phys. A
,
80
, pp.
93
97
.
49.
Campos
,
E. A.
,
Gushikem
,
Y.
,
Gonçalves
,
M. C.
, and
de Castro
,
S. C.
, 1996, “
Preparation and Characterization of Niobium Oxide Coated Cellulose Fiber
,”
J. Colloid Interface Sci.
,
180
, pp.
453
459
.
50.
Zabetakis
,
D.
,
Dinderman
,
M.
,
Schoen
,
P.
, 2005, “
Metal-Coated Fibers for Use in Composites Applicable to Microwave Technology
,”
Adv. Mater.
,
7
, pp.
734
738
.
51.
Basmaji
,
P.
, 2010, “
Nanomaterials in Energy and Environment
,” (NMEE Seminar), July 23, 2010, organized by ISESCO, CIIT, DU, COMSATS, and HIAST, Damascus University (DU), Damascus, Syria.
52.
Zhang
,
D.
, and
Qi
,
L.
, 2005, “
Synthesis of Mesoporous Titania Networks Consisting of Anatase Nanowires by Templating of Bacterial Cellulose Membranes
,”
Chem. Commun.
,
21
, pp.
2735
2737
.
53.
Taneka
,
K.
, and
Kozuka
,
H.
, 2004, “
Sol-Gel Preparation and Mechanical Properties of Machinable Cellulose/Silica and Polyvinylpyrrolidone/Silica Composites
,”
J. Sol-Gel Sci. Technol.
,
32
, pp.
73
77
.
54.
Person
,
P.
, 2004, Ph.D. thesis, Stockholm University, Stockholm, SE.
55.
Woehl
,
M. A.
, 2009, M.Sc. thesis, Universidade Federal do Paraná, Curitiba, BR
56.
Hisano
,
C.
, 2006, M.Sc., thesis, Universidade Estadual Paulista, São Paulo, BR
57.
Dammstrom
,
S.
, and
Gatenholm
,
P.
, 2006, “
Preparation and Properties of Cellulose/Xylan Nanocomposites
,”
Characterization of the Cellulosic Cell Wall
,
D.
Stokke
, and
L. H.
Groom
, eds.,
Wiley-Blackwell Ames
,
IA
.
58.
Hamlyn
,
P. F.
,
Crighton
,
J.
,
Dobb
,
M. G.
, and
Tasker
,
A.
, 1998, “
Cellulose Product
,” EU Patent No. 2314856.
59.
Dubey
,
V.
,
Pandey
,
L. K.
, and
Saxena
,
C.
, 2005, “
Pervaporative Separation of Ethanol/Water Azeotrope Using a Novel Chitosan-Impregnated Bacterial Cellulose Membrane and Chitosan-Poly(Vinyl Alcohol) Blends
,”
J. Membr. Sci.
,
251
, pp.
131
136
.
60.
Hutchens
,
S. A.
,
Benson
,
R. S.
,
Evans
,
B. R.
,
O’Neill
,
H. M.
, and
Rawn
,
C. J.
, 2006, “
Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hy-drogel
,”
Biomaterials
,
27
, pp.
4661
4670
.
61.
Olyveira
,
G. M.
,
Costa
,
L. M. M
,
Basmaji
,
P.
, et al.
, 2010, “
Active serum from Natural Rubber Latex/silver nanoparticles/bacterial cellulose system used for tissue regeneration
,”
3er Seminario Internacional de Nanociencias y Nanotecnologías
,
Havana, Cuba
.
62.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
, 2003, “
Double-Network Hydrogels with Extremely High Mechanical Strength
,”
Adv. Mater.
,
15
, pp.
1155
1158
.
63.
Nakayama
,
A.
,
Kakugo
,
A.
,
Gong
,
J. P.
,
Osada
,
Y.
,
Takai
,
M.
,
Erata
,
T.
, and
Kawano
,
S.
, 2004, “
High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose
,”
Adv. Funct. Mater.
,
14
, pp.
1124
1128
.
64.
Jung
,
R.
, and
Jin
,
H. J.
, 2007, “
Preparations of Silk Fibroin/Bacterial Cellulose Composite Films and Their Mechanical Properties
,”
Key Eng. Mater.
,
343
, pp.
741
744
.
65.
Tomé
,
L. C.
,
Brandão
,
L.
,
Mendes
,
A. M.
,
Silvestre
,
A. J. D.
,
Neto
,
C. P.
,
Gandini
,
A.
,
Freire
,
C. S. R.
, and
Marrucho
,
I. M.
, 2010, “
Preparation and Characterization of Bacterial Cellulose Membranes With Tailored Surface and Barrier Properties
,”
Cellulose
,
17
, pp.
1203
1211
.
66.
Kottke-Marchant
,
K.
,
Anderson
,
J. M.
,
Umemura
,
Y.
, and
Marchant
,
R. E.
, 1989, “
Effect of Albumin Coating on the In Vitro Blood Compatibility of Dacron Arterial Prostheses
,”
Biomaterials
,
10
, pp.
147
155
.
67.
Hoffman
,
A. S.
,
Schmer
,
G.
,
Harris
,
C.
, and
Kraft
,
W. G.
, 1972, “
Covalent Binding of Biomolecules to Radiation Grafted Hydrogels on Inert Polymer Surfaces
,”
Trans. Am. Soc. Artif. Intern. Organs
,
18
, pp.
10
18
.
68.
Ebert
,
C. D.
,
Lee
,
E.S.
, and
Kim
,
S. W.
, 1982, “
The Antiplatelet Activity of Immobilized Prostacyclin
,”
J. Biomed. Mater. Res.
,
16
, pp.
629
638
.
69.
Andersson
,
J.
,
Sanchez
,
J.
,
Ekdahl
,
K. N.
,
Elgue
,
G.
, and
Nilsson
,
B.
, 2003, “
Optimal Heparin Surface Concentration and Antithrombin Binding Capacity as Evaluated With Human Non-Anticoagulated Blood In Vitro
,”
J. Biomed. Mater. Res. Part A
,
67
, pp.
458
466
.
70.
Riesenfeld
,
J.
,
Olsson
,
P.
,
Sanchez
,
J.
, and
Mollnes
,
T. E.
, 1995, “
Surface Modification with Functionally Active Heparin
,”
Med. Device Technol.
,
6
, pp.
24
31
.
71.
Clark
,
P.
, 1994, “
Cell Behavior on Micropatterned Surfaces
,”
Biosens. Bioelectron.
,
9
, pp.
657
661
.
72.
Van der Kraan
,
P. M.
,
Buma
,
P.
,
Van Kuppevet
,
T.
, and
van den Berg
,
W. B.
, 2002, “
Interaction of Chondrocytes, Extracellular Matrix and Growth Factors: Relevance for Articular Cartilage Tissue Engineering
,”
Osteoarthritis Cartilage
,
10
, pp.
631
637
.
73.
Svensson
,
A.
,
Nicklasson
,
E.
,
Harrah
,
T.
,
Panilaitis
,
B.
,
Kaplan
,
D. L.
,
Brittberg
,
M.
, and
Gatenholm
,
P.
, 2005, “
Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage
,”
Biomaterials
,
26
, pp.
419
431
.
74.
D’Souza
,
S. E.
,
Ginsberg
,
M. H.
, and
Plow
,
E. F.
, 1991, “
Arginyl-Glycyl-Aspartic Acid (RGD): A Cell Adhesion Motif
,”
Trends Biochem. Sci.
,
16
, pp.
246
250
.
75.
Gabriel
,
M.
,
Van Nieuw Amerongen
,
G. P.
,
Van Hinsbergh
,
V. W.
,
Amerongen
,
A. V.
, and
Zentner
,
A.
, 2006, “
Direct Grafting of RGD-Motif-Containing Peptide on the Surface of Polycaprolactone Films
,”
J. Biomater. Sci. Polym. Ed.
,
17
, pp.
567
577
.
76.
Hersel
,
U.
,
Dahmen
,
C.
,
Kessler
,
H.
, 2003, “
RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond
,”
Biomaterials
,
24
, pp.
4385
4415
.
77.
Andrade
,
F. K.
,
Moreira
,
S. M.
,
Dominques
,
L.
, and
Gama
,
F. M.
, 2009, “
Improving the Affinity of Fibroblasts for Bacterial Cellulose Using Carbohydrate-Binding Modules Fused to RGD
,”
J. Biomed. Mater. Res. Part A
,
92
, pp.
9
17
.
78.
Tomme
,
P.
,
Boraston
,
A.
,
McLean
,
B.
,
Kormos
,
J.
,
Creaqh
,
A. L.
,
Sturch
,
K.
,
Gilkes
,
N. R.
,
Haynes
,
C. A.
,
Warren
,
R. A.
, and
Kilburn
,
D. G.
, 1998, “
Characterization and Affinity Applications of Cellulose-Binding Domains
,”
J. Chromatogr., B: Biomed. Sci. Appl.
,
715
, pp.
283
296
.
79.
Andrade
,
F. K.
,
Costa
,
R.
,
Domingues
,
L.
,
Soares
,
R.
, and
Gama
,
M.
, 2010, “
Improving Bacterial Cellulose for Blood Vessel Replacement: Functionalization with a Chimeric Protein Containing a Cellulose-Binding Module and an Adhesion Peptide
,”
Acta Biomater.
6
, pp.
4034
4041
.
80.
Terranova
,
V. P.
,
Jendresen
,
M.
, and
Young
,
F.
, 1989, “
Healing, Regeneration, and Repair: Prospectus for New Dental Treatment
,”
Adv. Dent. Res.
,
3
, pp.
69
79
.
81.
Hui
,
J.
,
Yuanyuan
,
J.
,
Jiao
,
W.
,
Yuan
,
H.
,
Yuan
,
Z.
, and
Shiru
,
J.
, 2009, “
Potentiality of Bacterial Cellulose as the Scaffold of Tissue Engineering of Cornea
,”
2nd international Conference on Biomedical Engineering and Informatics
,
Tianjin, China
.
82.
Bodin
,
A.
,
Bharadwaj
,
S.
,
Wu
,
S.
,
Gatenholm
,
P.
,
Atala
,
A.
, and
Zhang
,
Y.
, 2010, “
Tissue-Engineered Conduit Using Urine-Derived Stem Cells Seeded Bacterial Cellulose Polymer in Urinary Reconstruction and Diversion
,”
Biomaterials
,
31
, pp.
8889
8901
.
83.
Andersson
,
J.
,
Stenhamre
,
H.
,
Bachdahl
,
H.
, and
Gatenholm
,
P.
, 2010, “
Behavior of Human Chondrocytes in Engineered Porous Bacterial Cellulose Scaffolds
,”
J. Biomed. Mater Res. Part A
,
94
, pp.
1124
1132
.
84.
Grande
,
C. J.
,
Torres
,
F. G.
,
Gomez
,
C. M.
, and
Baňó
,
M. C.
, 2009, “
Nanocomposites of Bacterial Cellulose/Hydroxyapatite for Biomedical Applications
,”
Acta Biomater.
,
5
, pp.
1605
1615
.
85.
Bhattarai
,
S. R.
,
Bhattarai
,
N.
,
Yi
,
H. K.
,
Hwang
,
P. H.
,
Cha
,
D. L.
, and
Kim
,
H. Y.
, 2005, “
Novel Biodegradable Electrospun Membrane: Scaffold for Tissue Engineering
,”
Biomaterials
,
25
, pp.
2595
2602
.
86.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, 2001, “
The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors
,”
Tissue Eng.
,
7
, pp.
679
689
.
87.
Kim
,
J.
,
Cai
,
Z.
, and
Chen
,
Y.
, 2010, “
Biocompatible Bacterial Cellulose Composites for Biomedical Application
,”
J. Nanotechnol. Eng. Med.
,
1
(
1
),
011006
.
88.
Chu
,
P. K
,
Chen
,
J. Y.
,
Wang
,
L. P.
, and
Huang
,
N.
, 2002, “
Plasma-Surface Modification of Biomaterials
,”
Mater. Sci. Eng. R
,
36
, pp.
143
206
.
89.
Dekker
,
A.
,
Reitsma
,
K.
,
Beugeling
,
T.
,
Bantjes
,
A.
,
Feijen
,
J.
, and
van Aken
,
W. G.
, 1991, “
Adhesion of Endothelial-Cells and Adsorption of Serum-Proteins on Gas Plasma-Treated Polytetrafluoroethylene
,”
Biomaterials
,
12
, pp.
130
138
.
90.
Alves
,
C. M.
,
Yang
,
Y.
,
Carnes
,
D. L.
,
Ong
,
J. L.
,
Sylvia
,
V. L.
,
Dean
,
D. D.
,
Agrawal
,
C. M.
, and
Reis
,
R. L.
, 2007, “
Modulating Bone Cells Response Onto Starch-Based Biomaterials by Surface Plasma Treatment and Protein Adsorption
,”
Biomaterials
,
28
, pp.
307
315
.
91.
Hsu
,
S. H.
, and
Chen
,
W. C.
, 2000, “
Improved Cell Adhesion by Plasma-Induced Grafting of Lactide Onto Polyurethane Surface
,”
Biomaterials
,
21
, pp.
359
367
.
92.
Gupta
,
B.
,
Plummer
,
C.
,
Bisson
,
I.
,
Frey
,
P.
, and
Hilborn
,
J.
, 2002, “
Plasma-Induced Graft Polymerization of Acrylic Acid Onto Poly (Ethylene Terephthalate) Films: Characterization and Human Smooth Muscle Cell Growth on Grafted Films
,”
Biomaterials
,
23
, pp.
863
871
.
93.
Hamerli
,
P.
,
Weigel
,
T.
,
Groth
,
T.
,
Paul
,
D.
, 2003, “
Surface Properties of and Cell Adhesion Onto Allylamineplasma-Coated Polyethylenterephtalat Membranes
,”
Biomaterials
,
24
, pp.
3989
3999
.
94.
Nakagawa
,
M.
,
Teraoka
,
F.
,
Fujimoto
,
S.
,
Hamada
,
Y.
,
Kibayashi
,
H.
, and
Takahashi
,
J.
, 2006, “
Improvement of Cell Adhesion on Poly (L-Lactide) by atmospheric Plasma Treatment
,”
J. Biomed. Mater. Res. Part A
,
77
, pp.
112
118
.
95.
Wan
,
Y.
,
Yang
,
J.
,
Yang
,
J.
,
Bei
,
J.
, and
Wang
,
S.
, 2003, “
Cell Adhesion on Gaseous Plasma Modified Poly-(L-Lactide) Surface Under Shear Stress Field
,”
Biomaterials
,
24
, pp.
3757
3764
.
You do not currently have access to this content.