Fiber-reinforced metal laminate (FRML) composites are currently used as a structural material in the aerospace industry. A common FRML, glass layered aluminum reinforced epoxy (Glare), possesses a set of mechanical properties which was achieved by designing its layup structure to combine metal alloy and fiber-reinforced polymer phases. Beyond static and dynamic mechanical properties at the material characterization phase, however, the need exists to develop methods that could assess the evolving material state of Glare, especially in a progressive failure context. This paper presents a nondestructive approach to monitor the damage at the material scale and combine such information with characterization and postmortem evaluation methods, as well as data postprocessing to provide an assessment of the failure process during monotonic loading conditions. The approach is based on multiscale sensing using the acoustic emission (AE) method, which was augmented in this paper in two ways. First, by applying it to all material components separately in addition to actual Glare specimens. Second, by performing testing and evaluation at both the laboratory scale as well as at the scale defined inside the scanning electron microscopy. Such elaborate testing and nondestructive evaluation results provided the basis for the application of digital signal processing and machine learning methods which were capable to identify data trends that are shown to be correlated with the evolution of failure modes in Glare.

References

1.
Wu
,
G.
, and
Yang
,
J. M.
,
2005
, “
The Mechanical Behavior of GLARE Laminates for Aircraft Structures
,”
JOM
,
57
(
1
), pp.
72
79
.
2.
Chawla
,
K. K.
,
2012
,
Composite Materials: Science and Engineering
,
Springer
,
New York
.
3.
Dutton
,
S.
,
Kelly
,
D.
, and
Baker
,
A.
,
2004
,
Composite Materials for Aircraft Structures
, 2nd,
AIAA
,
Reston, VA
.
4.
Chung
,
D. D.
,
2010
,
Composite Materials: Science and Applications
,
Springer
,
New York
.
5.
Vlot
,
A.
,
2001
,
Glare: History of the Development of a new Aircraft Material
,
Kluwer Academic Publisher
,
Dordrecht, The Netherlands
.
6.
Beumler
,
T.
,
2004
, “
Flying Glare, A Contribution to Aircraft Certification Issues on Strength Properties in Non-Damaged and Fatigue Damaged GLARE® Structures
,” dissertation, Technical University Delft, Faculty of Aerospace Engineering.
7.
Talreja
,
R.
, and
Singh
,
C. V.
,
2012
,
Damage and Failure of Composite Materials
,
Cambridge University Press
,
Cambridge
.
8.
Talreja
,
R.
, and
Varna
,
J.
,
2015
,
Modeling Damage, Fatigue and Failure of Composite Materials
,
Elsevier
,
New York/Amsterdam
.
9.
Randell
,
C. E.
,
2005
,
Subsurface Fatigue Crack Growth in Glare Fibre Metal Laminates
,
PrintPartners Ipskamp
,
Enschede, The Netherlands
.
10.
Bussiba
,
A.
,
Kupiec
,
M.
,
Ifergane
,
S.
,
Piat
,
R.
, and
Böhlke
,
T.
,
2008
, “
Damage Evolution and Fracture Events Sequence in Various Composites by Acoustic Emission Technique
,”
Compos. Sci. Technol.
,
68
(
5
), pp.
1144
1155
.
11.
Cuadra
,
J.
,
Vanniamparambil
,
P. A.
,
Hazeli
,
K.
,
Bartoli
,
I.
, and
Kontsos
,
A.
,
2013
, “
Damage Quantification in Polymer Composites Using a Hybrid NDT Approach
,”
Compos. Sci. Technol.
,
83
, pp.
11
21
.
12.
Castaneda
,
N.
,
Wisner
,
B.
,
Cuadra
,
J.
,
Amini
,
S.
, and
Kontsos
,
A.
,
2017
, “
Investigation of the Z-Binder Role in Progressive Damage of 3D Woven Composites
,”
Composites, Part A
,
98
, pp.
76
89
.
13.
Miller
,
R. K.
, and
McIntire
,
P.
,
2005
,
Nondestructive Testing Handbook. Vol. 6: Acoustic Emission Testing
,
ASNT
,
Columbus, OH
.
14.
Hellier
,
C.
,
2003
,
Handbook of Nondestructive Evaluation
,
Mcgraw Hill Press
,
New York
.
15.
ASTM Standard, E1316-16
.,
2016
, “
Standard Terminology for Nondestructive Examinations
,”
ASTM International
,
West Conshohocken, PA
, p.
E1316
16.
Pollock
,
A.
,
1989
, “
Acoustic Emission Inspection
,”
ASM Handbook, Vol 17 Nondestructive Evaluation and Quality Control
, 9th ed.,
S.R
Lampman
,
T. B
Zorc
, and
H. J
Frissel
, eds.,
ASM International
,
Materials Park, OH
, pp.
278
294
.
17.
Vanniamparambil
,
P. A.
,
Bolhassani
,
M.
,
Carmi
,
R.
,
Khan
,
F.
,
Bartoli
,
I.
,
Moon
,
F. L.
,
Hamid
,
A.
, and
Kontsos
,
A.
,
2014
, “
A Data Fusion Approach for Progressive Damage Quantification in Reinforced Concrete Masonry Walls
,”
Smart Mater. Struct.
,
23
(
1
), p.
015007
.
18.
Esola
,
S.
,
Wisner
,
B.
,
Vanniamparambil
,
P.
,
Geriguis
,
J.
, and
Kontsos
,
A.
,
2018
, “
Part Qualification Methodology for Composite Aircraft Components Using Acoustic Emission Monitoring
,”
Appl. Sci.
,
8
(
9
), p.
1490
.
19.
Wisner
,
B.
, and
Kontsos
,
A.
,
2018
, “
Investigation of Particle Fracture During Fatigue of Aluminum 2024
,”
Int. J. Fatigue
,
111
, pp.
33
43
.
20.
Hazeli
,
K.
,
Askari
,
H.
,
Cuadra
,
J.
,
Streller
,
F.
,
Carpick
,
R.
,
Zbib
,
H.
, and
Kontsos
,
A.
,
2015
, “
Microstructure-Sensitive Investigation of Magnesium Alloy Fatigue
,”
Int. J. Plast.
,
68
, pp.
55
76
.
21.
Mo
,
C.
,
Wisner
,
B.
,
Cabal
,
M.
,
Hazeli
,
K.
,
Ramesh
,
K.
,
El Kadiri
,
H.
,
Al-Samman
,
T.
,
Molodov
,
K. D.
,
Molodov
,
D. A.
, and
Kontsos
,
A.
,
2016
, “
Acoustic Emission of Deformation Twinning in Magnesium
,”
Materials
,
9
(
8
), p.
662
.
22.
Vanniamparambil
,
P.
,
Guclu
,
U.
, and
Kontsos
,
A.
,
2015
, “
Identification of Crack Initiation in Aluminum Alloys Using Acoustic Emission
,”
Exp. Mech.
,
55
(
5
), pp.
837
850
.
23.
Sause
,
M.
,
2010
,
Identification of Failure Mechanisms in Hybrid Materials Utilizing Pattern Recognition Techniques Applied to Acoustic Emission Signals
,
Mensch und Buch Verlag
,
Berlin, Germany
.
24.
Sause
,
M. G. R.
,
Gribov
,
A.
,
Unwin
,
A. R.
, and
Horn
,
S.
,
2012
, “
Pattern Recognition Approach to Identify Natural Clusters of Acoustic Emission Signals
,”
Pattern Recognit. Lett.
,
33
(
1
), pp.
17
23
.
25.
Sause
,
M. G.
,
2016
,
In Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications
,
Springer
,
New York
.
26.
Suzuki
,
H.
,
Kinjo
,
T.
,
Hayashi
,
Y.
,
Takemoto
,
M.
,
Ono
,
K.
, and
Hayashi
,
Y.
,
1996
, “
Wavelet Transform of Acoustic Emission Signals
,”
J. Acoust. Emiss.
,
14
(
2
), pp.
69
84
.
27.
Hamstad
,
M.
,
O’Gallagher
,
A.
, and
Gary
,
J.
,
2002
, “
A Wavelet Transform Applied to Acoustic Emission
,”
J. Acoust. Emiss.
,
20
, pp.
39
61
.
28.
Murthy
,
C.
,
Dattaguru
,
B.
, and
Rao
,
A.
,
1987
, “
Application of Pattern Recognition Concepts to Acoustic Emission Signals Analysis
,”
J. Acoust. Emiss.
,
6
(
1
), pp.
19
28
.
29.
Anastassopoulos
,
A.
, and
Philippidis
,
T.
,
1995
, “
Clustering Methodology for the Evaluation of Acoustic Emission From Composites
,”
J. Acoust. Emiss.
,
13
(
1–2
), pp.
11
22
.
30.
Anastassopoulos
,
A.
,
Tsimogiannis
,
A.
, and
Kouroussis
,
D.
, “
Unsupervised Classification of Acoustic Emission Sources From Aerial man Lift Devices
,”
Proceedings of the World Conference on NDT-15th WCNDT
,
Rome, Italy
,
Oct. 15–21
, AIPnD, Brescia, Italy.
31.
Kostopoulos
,
V.
,
Loutas
,
T. H.
,
Kontsos
,
A.
,
Sotiriadis
,
G.
, and
Pappas
,
Y. Z.
,
2003
, “
On the Identification of the Failure Mechanisms in Oxide/Oxide Composites Using Acoustic Emission
,”
NDT E Int.
,
36
(
8
), pp.
571
580
.
32.
Godin
,
N.
,
Huguet
,
S.
,
Gaertner
,
R.
, and
Salmon
,
L.
,
2004
, “
Clustering of Acoustic Emission Signals Collected During Tensile Tests on Unidirectional Glass/Polyester Composite Using Supervised and Unsupervised Classifiers
,”
NDT E Int.
,
37
(
4
), pp.
253
264
.
33.
Anastasopoulos
,
A.
,
2005
, “
Pattern Recognition Techniques for Acoustic Emission-Based Condition Assessment of Unfired Pressure Vessels
,”
J. Acoust. Emiss.
,
23
, p.
318
.
34.
Anastassopoulos
,
A.
,
Nikolaidis
,
V.
, and
Philippidis
,
T.
,
1999
, “
A Comparative Study of Pattern Recognition Algorithms for Classification of Ultrasonic Signals
,”
Neural Comput. Appl.
,
8
(
1
), pp.
53
66
.
35.
MacQueen
,
J.
,
1967
, “
Some Methods for Classification and Analysis of Multivariate Observations
,”
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
,
UC Berkeley, CA
,
June 21–July 18, 1965
, pp.
281
297
.
36.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm AS 136: A k-Means Clustering Algorithm
,”
J. R. Statist. Soc. C
,
28
(
1
), pp.
100
108
.
37.
Alsabti
,
K.
,
Ranka
,
S.
, and
Singh
,
V.
,
1997
, “
An Efficient k-Means Clustering Algorithm
,” Electrical Engineering and Computer Science, paper 43.
38.
Kanungo
,
T.
,
Mount
,
D. M.
,
Netanyahu
,
N. S.
,
Piatko
,
C. D.
,
Silverman
,
R.
, and
Wu
,
A. Y.
,
2002
, “
An Efficient k-Means Clustering Algorithm: Analysis and Implementation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
7
), pp.
881
892
.
39.
Likas
,
A.
,
Vlassis
,
N.
, and
Verbeek
,
J. J.
,
2003
, “
The Global k-Means Clustering Algorithm
,”
Pattern Recognit.
,
36
(
2
), pp.
451
461
.
40.
Forgy
,
E. W.
,
1965
, “
Cluster Analysis of Multivariate Data: Efficiency Versus Interpretability of Classifications
,”
Biometrics
,
21
, pp.
768
769
.
41.
Simpson
,
P. K.
,
1992
, “
Fuzzy Min-Max Neural Networks. I. Classification
,”
IEEE Trans. Neural Networks
,
3
(
5
), pp.
776
786
.
42.
Simpson
,
P. K.
,
1993
, “
Fuzzy Min-Max Neural Networks–Part 2: Clustering
,”
IEEE Trans. Fuzzy Syst.
,
1
(
1
), pp.
32
.
43.
Tou
,
J. T.
, and
Gonzalez
,
R. C.
,
1974
,
Pattern Recognition Principles
,
Addison-Wesley
,
Boston, MA
.
44.
Davies
,
D. L.
, and
Bouldin
,
D. W.
,
1979
, “
A Cluster Separation Measure
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-1
(
2
), pp.
224
227
.
45.
Kohonen
,
T.
,
1995
,
Self-Organizing Maps, Volume 30 of Springer Series in Information Sciences
,
Springer
,
Berlin/Heidelberg
.
46.
Kohonen
,
T.
, and
Somervuo
,
P.
,
1998
, “
Self-organizing Maps of Symbol Strings
,”
Neurocomputing
,
21
(
1
), pp.
19
30
.
47.
Kohonen
,
T.
,
1998
, “
The Self-Organizing map
,”
Neurocomputing
,
21
(
1
), pp.
1
6
.
48.
Kohonen
,
T.
,
2013
, “
Essentials of the Self-Organizing Map
,”
Neural Networks
,
37
, pp.
52
65
.
49.
Bow
,
S.
,
Pattern Recognition, Application to Large Data-set Problems, 1984
,
Marcel Dekker, Inc.
,
New York
.
50.
Matthews
,
D.
,
Ocelik
,
V.
,
Bronsveld
,
P.
, and
De Hosson
,
J. T. M.
,
2008
, “
An Electron Microscopy Appraisal of Tensile Fracture in Metallic Glasses
,”
Acta Mater.
,
56
(
8
), pp.
1762
1773
.
51.
Hosseini
,
S.
,
Temmel
,
C.
,
Karlsson
,
B.
, and
Ingesten
,
N.-G.
,
2007
, “
An In-Situ Scanning Electron Microscopy Study of the Bonding Between MnS Inclusions and the Matrix During Tensile Deformation of Hot-Rolled Steels
,”
Metall. Mater. Trans. A
,
38
(
5
), pp.
982
989
.
52.
Lu
,
S.
,
Dikin
,
D. A.
,
Zhang
,
S.
,
Fisher
,
F. T.
,
Lee
,
J.
, and
Ruoff
,
R. S.
,
2004
, “
Realization of Nanoscale Resolution with a Micromachined Thermally Actuated Testing Stage
,”
Rev. Sci. Instrum.
,
75
(
6
), pp.
2154
2162
.
53.
Podor
,
R.
,
Brau
,
H.-P.
, and
Ravaux
,
J.
,
2012
,
In Situ Experiments in the Scanning Electron Microscope Chamber
,
IntechOpen
,
London, UK
.
54.
Wisner
,
B.
,
Cabal
,
M.
,
Vanniamparambil
,
P.
,
Hochhalter
,
J.
,
Leser
,
W.
, and
Kontsos
,
A.
,
2015
, “
In Situ Microscopic Investigation to Validate Acoustic Emission Monitoring
,”
Exp. Mech.
,
55
(
9
), pp.
1705
1715
.
55.
Wisner
,
B.
,
Mazur
,
K.
,
Perumal
,
V.
,
Baxevanakis
,
K.
,
An
,
L.
,
Feng
,
G.
, and
Kontsos
,
A.
,
2019
, “
Acoustic Emission Signal Processing Framework to Identify Fracture in Aluminum Alloys
,”
Eng. Fract. Mech.,
210
, pp.
367
380
.
56.
Wisner
,
B.
, and
Kontsos
,
A.
,
2017
, “
Fatigue Damage Precursor Identification Using Nondestructive Evaluation Coupled With Electron Microscopy
,”
Fracture, Fatigue, Failure and Damage Evolution
, Vol.
8
,
A. M
Beese
,
A.T
Zehnder
, and
X.
Shuman
, eds.,
Springer, Cham
,
New York
, pp.
1
8
.
57.
Alderliesten
,
R. C.
,
2005
,
Fatigue Crack Propagation and Delamination Growth in Glare
,
Delft University Press
,
Delft, Netherlands
.
58.
Vlot
,
A.
,
Vogelesang
,
L.
, and
De Vries
,
T.
,
1999
, “
Towards Application of Fibre Metal Laminates in Large Aircraft
,”
Aircr. Eng. Aerosp. Technol.
,
71
(
6
), pp.
558
570
.
59.
Vlot
,
A.
, and
Gunnink
,
J. W.
,
2001
,
Fibre Metal Laminates: An Introduction
,
Kluwer Academic Publisher
,
London
.
60.
De Vries
,
T.
,
Vlot
,
A.
, and
Hashagen
,
F.
,
1999
, “
Delamination Behavior of Spliced Fiber Metal Laminates. Part 1. Experimental Results
,”
Compos. Struct.
,
46
(
2
), pp.
131
145
.
61.
Kaufman
,
J. G.
,
2008
,
Properties of Aluminum Alloys: Fatigue Data and the Effects of Temperature, Product Form, and Processing
, 1st ed.,
ASM International
,
Materials Park, OH
.
62.
Kaufman
,
J. G.
,
2006
,
Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and low Temperatures
, 3rd,
ASM International
,
Materials Park, OH
.
63.
de Vries
,
T.J
,
2001
,
Blunt and Sharp Notch Behaviour of Glare Laminates
,
Delft University Press
,
Delft, Netherlands
.
64.
Vanniamparambil
,
P.
,
Guclu
,
U.
, and
Kontsos
,
A.
,
2015
, “
Identification of Crack Initiation in Aluminum Alloys Using Acoustic Emission
,”
Exp. Mech.,
55
(
5
), pp.
837
850
.
65.
Schwartz
,
M. M.
,
1984
,
Composite Materials Handbook
,
McGraw-Hill
,
New York
.
66.
Qi
,
G.
,
2000
, “
Wavelet-based AE Characterization of Composite Materials
,”
NDT E Int.
,
33
(
3
), pp.
133
144
.
67.
Yang
,
B.-L.
,
Zhuang
,
X.-M.
,
Zhang
,
T.-H.
, and
Yan
,
X.
,
2009
, “
Damage Mode Identification for the Clustering Analysis of AE Signals in Thermoplastic Composites
,”
J. Nondestruct. Eval.
,
28
(
3–4
), pp.
163
168
.
68.
Sause
,
M. G. R.
, and
Horn
,
S.
,
2010
, “
Simulation of Acoustic Emission in Planar Carbon Fiber Reinforced Plastic Specimens
,”
J. Nondestruct. Eval.
,
29
(
2
), pp.
123
142
.
You do not currently have access to this content.