In this paper, the computational fluid dynamics (CFD) code FLUENT was used to predict wall-temperature profiles inside vertical bare tubes with supercritical water (SCW) as the cooling medium, to assess the capabilities of FLUENT for SCW heat-transfer applications. Numerical results are compared to experimental data and current one-dimensional (1D) models represented by existing heat-transfer empirical correlations. Wall-temperature and heat-transfer coefficients were analyzed to select the best model to describe the fluid flow before, at, and after the pseudocritical region. kϵ and kω turbulent models were evaluated in the process, with variations in the submodel parameters such as viscous heating, thermal effects, and low-Reynolds-number correction. Results of the analysis show a fit of ±10% for wall temperatures using the SST kω model within the deteriorated heat-transfer regime and less than ±5% within the normal heat-transfer regime. The accuracy of the model is higher than any empirical correlation tested in the mentioned regimes and provides additional information about the multidimensional effects between the bulk-fluid and wall temperatures.

References

1.
Pioro
,
I.
, and
Duffey
,
R.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, pp. 334.
2.
Pioro
,
I.
, and
Duffey
,
R.
,
2015
, “
Nuclear Power as a Basis for Future Electricity Generation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), pp.
19
.10.1115/1.4029420
3.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “Generation IV Nuclear Reactors as a Basis for Future Electricity Production in the World,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
,
A.
Méndez-Vilas
,
, ed.,
Formatex Research Center
,
Spain
, pp.
818
830
.
4.
Sharabi
,
M.
,
Ambrosini
,
W.
,
Forgione
,
N.
, and
He
,
S.
,
2008
, “
SCWR Rod Bundle Thermal Analysis by a CFD Code
,”
International Conference on Nuclear Engineering (ICONE-16)
,
Orlando
, Paper No. 48501.
5.
Holloway
,
M. V.
, and
Beasley
,
D. E.
,
2006
, “
Investigation of Swirling Flow in Rod Bundle Subchannels Using CFD
,”
International Conference on Nuclear Engineering (ICONE-16)
,
Miami
, Paper No. 8908.
6.
Muhana
,
A.
, and
Novog
,
D. R.
,
2008
, “
Validation of FLUENT for Prediction of Flow Distribution and Pressure Gradients in a Multi-Branch Header Under Low Flow Conditions
,”
International Conference on Nuclear Engineering (ICONE-16)
,
Orlando
, Paper No. 48128.
7.
Pietralik
,
J.
, and
Smith
,
B. A.
,
2006
, “
CFD Application to FAC in Feeder Bends
,”
International Conference on Nuclear Engineering (ICONE-16)
,
Miami
, Paper No. 48630.
8.
Vanyukova
,
G.
,
Kuznetsov
,
Y. N.
,
Loninov
,
A. Y.
,
Papandin
,
M. V.
,
Smirnov
,
V. P.
, and
Pioro
,
I. L.
,
2009
, “
Application of CFD-Code to Calculations of Heat Transfer in a Fuel Bundle of SCW Pressure-Channel Reactor
,”
4th International Symposium on Supercritical Water-Cooled Reactors
,
Heidelberg, Germany
.
9.
IAEA
,
2014
,
Heat Transfer Behavior and Thermohydraulics Code Testing for SCWRs
, IAEA TECDOC Series,
IAEA
,
Vienna, Austria
, IAEA-TECDOC-1746.
10.
National Institute of Standards and Technology (NIST)
,
2010
, “
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
,” Standard Reference Database 23, Ver. 9.0,
Department of Commerce
, Boulder, CO.
11.
Dyadyakin
,
B. V.
, and
Popov
,
A. S.
,
1977
, “
Heat Transfer and Thermal Resistance of Tight Seven-Rod Bundle, Cooled With Water Flowing at Supercritical Pressures
,”
Transactions of VTI
, Vol.
11
, pp.
244
253
.
12.
Mokry
,
S.
,
Pioro
,
I. L.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
. 0029-549310.1016/j.nucengdes.2010.06.012
13.
Bishop
,
A.
,
Sandberg
,
R.
, and
Tong
,
L.
,
1964
,
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Super-Critcial Pressures
,
Westinghouse Electric Corporation
,
Pittsburgh, PA
.
14.
Palko
,
D.
, and
Anglart
,
H.
,
2009
, “
Investigation of the Onset of Heat Transfer Deterioration to Supercritical Water
,”
Proceedings of the 4th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-4)
,
Heidelberg, Germany
.
15.
Ambrosini
,
W.
,
Forgione
,
N.
,
Badiali
,
S.
,
Jackson
,
J. D.
, and
Sharabi
,
M.
,
2013
, “
Capabilites of Two-Equation Low-Reynolds Number Turbulence Models in Predicting Heat Transfer to Fluids at Supercritical Pressure
,”
Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-15)
,
Pisa, Italy
.
16.
Shiralkar
,
B.
, and
Griffith
,
P.
,
1968
,
The Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,
M.I.T. Engineering Projects Laboratory
,
Cambridge, MA
.
17.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
. 0017-931010.1016/0017-9310(95)00008-W
18.
Cheng
,
X.
,
Schulenberg
,
T.
,
Koshizuka
,
S.
,
Oka
,
Y.
, and
Souyri
,
A.
,
2002
, “
Thermal-Hydraulic Analysis of Supercritical Pressures Light Water Reactors
,”
Proceedings of ICAPP
,
Hollywood, FL
.
19.
Gabaraev
,
B.
,
Kuznetsov
,
Y.
,
Pioro
,
I.
, and
Duffey
,
R.
,
2007
, “
Experimental Study on Heat Transfer to Supercritical Water Flowing in 6-m Long Vertical Tubes
,”
Proceedings of the 15th International Conference on Nuclear Engineering (ICONE-15)
,
Nagoya, Japan
, Paper No. 10692.
20.
Kirillov
,
P.
,
Pometko
,
R.
,
Smirnov
,
A.
,
Grabezhnaia
,
V.
,
Pioro
,
I.
,
Duffey
,
R.
, and
Khartabil
,
H.
,
2005
, “
Experimental Study on Heat Transfer in Supercritical Water Flowing in 1- and 4-m-Long Vertical Tubes
,”
Proceedings of GLOBAL’05
,
Tsukuba, Japan
.
21.
Withag
,
J.
,
Sallevelt
,
J.
,
Brilman
,
D.
,
Bramer
,
E.
, and
Brem
,
G.
,
2012
, “
Heat Transfer Characteristics of Supercritical Water in a Tube: Application for 2D and an Experimental Validation
,”
J. Supercrit. Fluids
,
70
, pp.
156
170
.10.1016/j.supflu.2012.07.002
22.
Malhotra
,
A.
, and
Kang
,
S. S.
,
1984
, “
Turbulent Prandtl Number in Circular Pipes
,”
Int. J. Heat Mass Transfer
,
27
(
11
), pp.
2158
2161
. 0017-931010.1016/0017-9310(84)90203-5
23.
Zikanov
,
O.
,
2010
,
Essential Computational Fluid Dynamics
,
Wiley
.
24.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
2002
,
Data Reduction and Error Analysis for the Physical Sciences
,
McGraw
,
Boston, MA
.
You do not currently have access to this content.