Flow-induced vibrations (FIVs) of two elastically mounted circular cylinders in staggered arrangement were experimentally investigated. The Reynolds number range for all experiments (2.5 × 104 < Re < 1.2 × 105) was in the transition in shear layer 3 (TrSL3) flow regime. The oscillator parameters selected were: mass ratio m* = 1.343 (ratio of oscillating mass to displaced fluid mass), spring stiffness K = 250 N/m, and damping ratio ζ = 0.02. The experiments were conducted in the low turbulence free surface water (LTFSW) channel in the MRELab of the University of Michigan. A closed-loop, virtual spring–damper system (Vck) was used to facilitate quick and accurate parameter setting. Based on the characteristics of the displacement response, five vibration patterns were identified and their corresponding regions in the parametric plane of the in-flow spacing (1.57 < L/D < 4.57) and transverse cylinder spacing (0 < T/D < 2) were defined. The hydrodynamic forces and frequency characteristics of the vibration response are also discussed.

References

1.
Zdravkovich
,
M. M.
,
1988
, “
Review of Interference-Induced Oscillations in Flow Past Two Parallel Circular Cylinders in Various Arrangements
,”
J. Wind Eng. Ind. Aerodyn.
,
28
(
1
), pp.
183
199
.
2.
King
,
R.
, and
Johns
,
D. J.
,
1976
, “
Wake Interaction Experiments With Two Flexible Circular Cylinders in Flowing Water
,”
J. Sound Vib.
,
45
(
2
), pp.
259
283
.
3.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Proximity-Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
417
449
.
4.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Wake-Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
383
415
.
5.
Zdravkovich
,
M. M.
,
1985
, “
Flow Induced Oscillations of Two Interfering Circular Cylinders
,”
J. Sound Vib.
,
101
(
4
), pp.
511
521
.
6.
Zdravkovich
,
M. M.
, and
Medeiros
,
E. B.
,
1991
, “
Effect of Damping on Interference-Induced Oscillations of Two Identical Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
38
(
2–3
), pp.
197
211
.
7.
Brika
,
D.
, and
Laneville
,
A.
,
1999
, “
The Flow Interaction Between a Stationary Cylinder and a Downstream Flexible Cylinder
,”
J. Fluids Struct.
,
13
(
5
), pp.
579
606
.
8.
Blevins
,
R. D.
,
2005
, “
Forces on and Stability of a Cylinder in a Wake
,”
ASME J. Offshore Mech. Arct. Eng.
,
127
(
1
), pp.
39
45
.
9.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2001
, “
Galloping Response of a Cylinder With Upstream Wake Interference
,”
J. Fluids Struct.
,
15
(
3
), pp.
503
512
.
10.
Assi
,
G. R. S.
,
Meneghini
,
J. R.
,
Aranha
,
J. A. P.
,
Bearman
,
P. W.
, and
Casaprima
,
E.
,
2006
, “
Experimental Investigation of Flow-Induced Vibration Interference Between Two Circular Cylinders
,”
J. Fluids Struct.
,
22
(
6
), pp.
819
827
.
11.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Meneghini
,
J. R.
,
2010
, “
On the Wake-Induced Vibration of Tandem Circular Cylinders: The Vortex Interaction Excitation Mechanism
,”
J. Fluid Mech.
,
661
, pp.
365
401
.
12.
Assi
,
G. R. S.
,
Bearman
,
P. W.
,
Carmo
,
B. S.
,
Meneghini
,
J. R.
,
Sherwin
,
S. J.
, and
Willden
,
R. H. J.
,
2013
, “
The Role of Wake Stiffness on the Wake-Induced Vibration of the Downstream Cylinder of a Tandem Pair
,”
J. Fluid Mech.
,
718
, pp.
210
245
.
13.
Assi
,
G. R. S.
,
2014
, “
Wake-Induced Vibration of Tandem and Staggered Cylinders With Two Degrees of Freedom
,”
J. Fluids Struct.
,
50
, pp.
340
357
.
14.
Kim
,
S.
,
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
,
2009
, “
Flow-Induced Vibrations of Two Circular Cylinders in Tandem Arrangement—Part 1: Characteristics of Vibration
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
5
), pp.
304
311
.
15.
Alam
,
M. M.
, and
Kim
,
S.
,
2009
, “
Free Vibration of Two Identical Circular Cylinders in Staggered Arrangement
,”
Fluid Dyn. Res.
,
41
(
3
), p.
035507
.
16.
Alam
,
M. M.
, and
Meyer
,
J. P.
,
2013
, “
Global Aerodynamic Instability of Twin Cylinders in Cross Flow
,”
J. Fluids Struct.
,
41
, pp.
135
145
.
17.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders: Fundamentals
, Vol.
1
,
Oxford University Press
,
New York
, pp.
133
198
.
18.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
19.
Raghavan
,
K.
, and
Bernitsas
,
M. M.
,
2011
, “
Experimental Investigation of Reynolds Number Effect on Vortex Induced Vibration of Rigid Circular Cylinder on Elastic Supports
,”
Ocean Eng.
,
38
(
5
), pp.
719
731
.
20.
Sun
,
H.
,
Bernitsas
,
M. P.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2015
, “
Virtual Spring-Damping System for Fluid Induced Motion Experiments
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
061801
.
21.
Blevins
,
R. D.
,
1991
,
Flow-Induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
, pp.
50
86
.
22.
Bernitsas
,
M. M.
,
2016
, “
Harvesting Energy by Flow Included Motions
,”
Springer Handbook of Ocean Engineering
,
M. R.
Dhanak
and
N. I.
Xiros
, eds.,
Springer-Verlag
,
Berlin
, Chap. 47.
23.
Prasanth
,
T. K.
, and
Mittal
,
S.
,
2007
, “
Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
594
, pp.
463
491
.
You do not currently have access to this content.