Abstract

In this paper, to determine the efficacy of the porous bed on damping far-field wave energy, the wave dynamics around a circular plate is studied. By combining the appropriate boundary conditions, the unknown potential is attained for the free surface and the plate-covered region. The Bessel series solution is attained further, by employing the matched eigenfunction expansion technique. Wave force excitation on the circular plate, deflection of the plate, and flow distribution is calculated and examined to comprehend the efficacy of the current investigation. Moreover, the motion of the plate is assessed in the time domain. The study reveals a substantial reduction in wave amplitude on the plate’s leeward side because of the energy dissipation by the porous bed. Also the study concludes that for intermediate values of porosity with larger wavenumbers, approximately 50% of wave power is dissipated with respect to incident wave power.

References

1.
Headland
,
J.
,
1995
, “Floating Breakwaters,”
Marine Structures Engineering: Specialized Applications
,
G. P.
Tsinker
, ed.,
Springer
,
Boston, MA
, pp.
367
411
.
2.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
.
3.
Kashiwagi
,
M.
,
1998
, “
A B-Spline Galerkin Scheme for Calculating the Hydroelastic Response of a Very Large Floating Structure in Waves
,”
J. Mar. Sci. Technol.
,
3
(
1
), pp.
37
49
.
4.
Meylan
,
M. H.
, and
Peter
,
M. A.
,
2009
, “
Water-Wave Scattering by Submerged Elastic Plates
,”
Quart. J. Mech. Appl. Math.
,
62
(
3
), pp.
321
344
.
5.
Koley
,
S.
,
Mondal
,
R.
, and
Sahoo
,
T.
,
2018
, “
Fredholm Integral Equation Technique for Hydroelastic Analysis of a Floating Flexible Porous Plate
,”
Eur. J. Mech. B/Fluids
,
67
, pp.
291
305
.
6.
Michele
,
S.
,
Zheng
,
S.
, and
Greaves
,
D.
,
2022
, “
Wave Energy Extraction From a Floating Flexible Circular Plate
,”
Ocean Eng.
,
245
, p.
110275
.
7.
Sturova
,
I.
,
1998
, “
The Oblique Incidence of Surface Waves Onto the Elastic Band
,”
Proceedings of the 2nd International Conference on Hydroelasticity in Marine Technology
,
Fukuoka, Japan
,
Dec. 1–3
, p.
239
.
8.
Behera
,
H.
,
Ng
,
C.-O.
, and
Sahoo
,
T.
,
2018
, “
Oblique Wave Scattering by a Floating Elastic Plate Over a Porous Bed in Single and Two-Layer Fluid Systems
,”
Ocean Eng.
,
159
, pp.
280
294
.
9.
Boral
,
S.
,
Sahoo
,
T.
, and
Meylan
,
M.
,
2023
, “
Gravity Wave Interaction With an Articulated Submerged Plate Resting on a Winkler Foundation
,”
Appl. Math. Model.
,
113
, pp.
416
438
.
10.
Ohkusu
,
M.
,
1996
, “
Analysis of Hydroelastic Behaviour of a Large Floating Platform of Thin Plate Configuration in Waves
,” VLFS’96, November 1996, Kanagawa.
11.
Fox
,
C.
, and
Squire
,
V. A.
,
1994
, “
On the Oblique Reflexion and Transmission of Ocean Waves at Shore Fast Sea Ice
,”
Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci.
,
347
(
1682
), pp.
185
218
.
12.
Sahoo
,
T.
,
Yip
,
T. L.
, and
Chwang
,
A. T.
,
2001
, “
Scattering of Surface Waves by a Semi-Infinite Floating Elastic Plate
,”
Phys. Fluids
,
13
(
11
), pp.
3215
3222
.
13.
Mohapatra
,
S.
,
Ghoshal
,
R.
, and
Sahoo
,
T.
,
2013
, “
Effect of Compression on Wave Diffraction by a Floating Elastic Plate
,”
J. Fluids Struct.
,
36
, pp.
124
135
.
14.
Lin
,
Q.
, and
Lu
,
D.
,
2013
, “
Hydroelastic Interaction Between Obliquely Incident Waves and a Semi-Infinite Elastic Plate on a Two-Layer Fluid
,”
Appl. Ocean Res.
,
43
, pp.
71
79
.
15.
Praveen
,
K.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Hydroelastic Response of Floating Elastic Plate in the Presence of Vertical Porous Barriers
,”
Ships Offshore Struct.
,
264
, pp.
1
15
.
16.
Negi
,
P.
,
Boral
,
S.
, and
Sahoo
,
T.
,
2022
, “
Scattering of Oblique Waves by a Semi-Infinite Floating Elastic Plate Within the Framework of Wave Blocking
,”
J. Eng. Math.
,
135
(
1
), pp.
1
30
.
17.
Yu
,
X.
, and
Chwang
,
A. T.
,
1993
, “
Analysis of Wave Scattering by Submerged Circular Disk
,”
J. Eng. Mech.
,
119
(
9
), pp.
1804
1817
.
18.
Pete
,
M. A.
,
Meylan
,
M. H.
, and
Chung
,
H.
,
2004
, “
Wave Scattering by a Circular Elastic Plate in Water of Finite Depth: A Closed Form Solution
,”
Int. J. Offshore Polar Eng.
,
14
(
2
), pp.
81
85
.
19.
Mondal
,
R.
,
Mandal
,
S.
, and
Sahoo
,
T.
,
2014
, “
Surface Gravity Wave Interaction With Circular Flexible Structures
,”
Ocean Eng.
,
88
, pp.
446
462
.
20.
Hua
,
R.-N.
,
Zhu
,
L.
, and
Lu
,
X.-Y.
,
2014
, “
Dynamics of Fluid Flow Over a Circular Flexible Plate
,”
J. Fluid. Mech.
,
759
, p.
56
.
21.
Selvan
,
S. A.
,
Behera
,
H.
, and
Sahoo
,
T.
,
2019
, “
Reduction of Hydroelastic Response of a Flexible Floating Structure by an Annular Flexible Permeable Membrane
,”
J. Eng. Math.
,
118
, pp.
1
27
.
22.
Behera
,
H.
,
Gayathri
,
R.
, and
Selvan
,
S. A.
,
2020
, “
Wave Attenuation by Multiple Outer Porous Barriers in the Presence of an Inner Rigid Cylinder
,”
J. Waterw. Port Coast. Ocean Eng.
,
146
(
1
), p.
04019035
.
23.
Selvan
,
S. A.
, and
Behera
,
H.
,
2020
, “
Wave Energy Dissipation by a Floating Circular Flexible Porous Membrane in Single and Two-Layer Fluids
,”
Ocean Eng.
,
206
, p.
107374
.
24.
Zilman
,
G.
, and
Miloh
,
T.
,
2000
, “
Hydroelastic Buoyant Circular Plate in Shallow Water: A Closed Form Solution
,”
Appl. Ocean Res.
,
22
(
4
), pp.
191
198
.
25.
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Wang
,
C. M.
, and
Xiang
,
Y.
,
2003
, “
Hydroelastic Analysis of Pontoon-Type Circular VLFS
,”
The Thirteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers
,
Honolulu, HI
,
May 25–30
, vol. 1, pp.
93
99
.
26.
Sturova
,
I.
,
2003
, “
The Action of an Unsteady External Load on a Circular Elastic Plate Floating on Shallow Water
,”
J. Appl. Math. Mech.
,
67
(
3
), pp.
407
416
.
27.
Andrianov
,
A.
, and
Hermans
,
A.
,
2005
, “
Hydroelasticity of a Circular Plate on Water of Finite or Infinite Depth
,”
J. Fluids Struct.
,
20
(
5
), pp.
719
733
.
28.
Pham
,
D.
,
Wang
,
C.
, and
Utsunomiya
,
T.
,
2008
, “
Hydroelastic Analysis of Pontoon-Type Circular VLFS With an Attached Submerged Plate
,”
Appl. Ocean Res.
,
30
(
4
), pp.
287
296
.
29.
Meylan
,
M. H.
,
Bennetts
,
L. G.
, and
Peter
,
M. A.
,
2017
, “
Water-Wave Scattering and Energy Dissipation by a Floating Porous Elastic Plate in Three Dimensions
,”
Wave Motion
,
70
, pp.
240
250
.
30.
Zheng
,
S.
,
Meylan
,
M. H.
,
Zhu
,
G.
,
Greaves
,
D.
, and
Iglesias
,
G.
,
2020
, “
Hydroelastic Interaction Between Water Waves and an Array of Circular Floating Porous Elastic Plates
,”
J. Fluid Mech.
,
900
, pp. A20-1–A20-25.
31.
Gayathri
,
R.
, and
Behera
,
H.
,
2021
, “
Mitigation of Wave Force on a Circular Flexible Plate by a Surface-Piercing Flexible Porous Barrier
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
,
235
(
2
), pp.
586
599
.
32.
Shagolshem
,
S.
,
Selvan
,
S. A.
,
Sani
,
M.
, and
Behera
,
H.
,
2019
, “
Surface Wave Scattering by Porous and Flexible Barrier Over a Permeable Bed
,”
AIP Conference Proceedings
,
Kattankulathur, Tamil Nadu, India
,
Jan. 11–12
, Vol.
2112
,
AIP Publishing LLC
, p.
020179
.
33.
Mohanty
,
S. K.
, and
Sidharth
,
M.
,
2020
, “
Time Dependent Wave Motion in a Permeable Bed
,”
Meccanica
,
55
, pp.
1481
1497
.
34.
Martha
,
S.
,
Bora
,
S.
, and
Chakrabarti
,
A.
,
2007
, “
Oblique Water-Wave Scattering by Small Undulation on a Porous Sea-Bed
,”
Appl. Ocean Res.
,
29
(
1–2
), pp.
86
90
.
35.
Belibassakis
,
K. A.
,
2012
, “
Water-Wave Induced Groundwater Pressure and Flow in Variable Bathymetry Regions and Sandy Beaches by an Enhanced Coupled-Mode Model
,”
Ocean Eng.
,
47
, pp.
104
118
.
36.
Athanassoulis
,
G.
, and
Belibassakis
,
K.
,
1999
, “
A Consistent Coupled-Mode Theory for the Propagation of Small-Amplitude Water Waves Over Variable Bathymetry Regions
,”
J. Fluid Mech.
,
389
, pp.
275
301
.
37.
Maiti
,
P.
, and
Mandal
,
B.
,
2014
, “
Water Wave Scattering by an Elastic Plate Floating in an Ocean With a Porous Bed
,”
Appl. Ocean Res.
,
47
, pp.
73
84
.
38.
Kundu
,
P.
, and
Mandal
,
B.
,
2019
, “
Generation of Surface Waves Due to Initial Axisymmetric Surface Disturbance in Water With a Porous Bottom
,”
Int. J. Appl. Mech. Eng.
,
24
(
3
), pp.
625
644
.
39.
Davys
,
J.
,
Hosking
,
R.
, and
Sneyd
,
A.
,
1985
, “
Waves Due to a Steadily Moving Source on a Floating Ice Plate
,”
J. Fluid Mech.
,
158
, pp.
269
287
.
40.
Schulkes
,
R. M. S. M.
,
Hosking
,
R.
, and
Sneyd
,
A.
,
1987
, “
Waves Due to a Steadily Moving Source on a Floating Ice Plate. Part 2
,”
J. Fluid Mech.
,
180
, pp.
297
318
.
41.
Selvan
,
S. A.
,
Gayathri
,
R.
,
Behera
,
H.
, and
Meylan
,
M. H.
,
2021
, “
Surface Wave Scattering by Multiple Flexible Fishing Cage System
,”
Phys. Fluids
,
33
(
3
), p.
037119
.
42.
Meylan
,
M. H.
,
2021
, “
Time-Dependent Motion of a Floating Circular Elastic Plate
,”
Fluids
,
6
(
1
), p.
29
.
You do not currently have access to this content.