Abstract

The deformation caused by waves and current in an aquatic environment significantly impacts the remaining volume of a net cage. Its fluctuations in magnitude could pose a potential threat to the well-being of cultivated species. There is a critical need for a simple, cost-effective solution to monitor cage deformation in real-time. This study proposes a depth-based method, utilizing just two depth meters attached to the cages floating collar and tube sinker, to estimate the remaining volume. Compared to the experimental measurements from previous studies, this method demonstrates satisfactory accuracies. Under current-only and waves-current conditions, the estimation differences are around 11.6% and 23%, respectively. In contrast, when compared to commonly used volume-based methods, the differences are approximately 1.8% and 9.5%. Despite a tendency for overestimation when the mean cross-sectional area deviates from the original top or bottom area of the cage, this method remains a feasible alternative. Its practicality highlights its potential as an efficient means of monitoring cage deformation.

References

1.
Ortuño
,
J.
,
Esteban
,
M. A.
, and
Meseguer
,
J.
,
2001
, “
Effects of Short-Term Crowding Stress on the Gilthead Seabream (Sparus aurata L.) Innate Immune Response
,”
Fish Shellfish Immunol.
,
11
(
2
), pp.
187
197
.
2.
Rowland
,
S. J.
,
Mifsud
,
C.
,
Nixon
,
M.
, and
Boyd
,
P.
,
2006
, “
Effects of Stocking Density on the Performance of the Australian Freshwater Silver Perch (Bidyanus bidyanus) in Cages
,”
Aquaculture
,
253
(
1–4
), pp.
301
308
.
3.
Harper
,
C.
, and
Wolf
,
J. C.
,
2009
, “
Morphologic Effects of the Stress Response in Fish
,”
ILAR J.
,
50
(
4
), pp.
387
396
.
4.
Yang
,
R.-Y.
,
Jan
,
S.-J.
,
Hwung
,
H.-H.
,
Kuo
,
L.-A.
,
Teng
,
C.-L.
, and
Capart
,
H.-C.
,
2008
, “
Experimental Study on the Interaction Between Flow Current and Cage Structure
,”
Int. J. Offshore Polar Eng.
,
18
(
2
), pp.
127
132
.
5.
Qu
,
X.
,
Hu
,
F.
,
Kumazawa
,
T.
,
Takeuchi
,
Y.
,
Dong
,
S.
,
Shiode
,
D.
, and
Tokai
,
T.
,
2019
, “
Deformation and Drag Force of Model Square Fish Cages in a Uniform Flow
,”
Ocean Eng.
,
171
, pp.
619
624
.
6.
Chen
,
Y.-Y.
,
Yang
,
B.-D.
, and
Chen
,
Y.-T.
,
2019
, “
Applying a 3-D Image Measurement Technique Exploring the Deformation of Net Cage Under Wave-Current Interaction
,”
Ocean Eng.
,
173
, pp.
823
834
.
7.
Dong
,
S.
,
Park
,
S. G.
,
Kitazawa
,
D.
,
Zhou
,
J.
,
Yoshida
,
T.
, and
Li
,
Q.
,
2021
, “
Model Tests and Full-Scale Sea Trials for Drag Force and Deformation of a Marine Aquaculture Net Cage
,”
Ocean Eng.
,
240
, p.
109941
.
8.
Dong
,
S.
,
You
,
X.
, and
Hu
,
F.
,
2021
, “
Experimental Investigation on the Fluid–Structure Interaction of a Flexible Net Cage Used to Farm Pacific Bluefin Tuna (Thunnus orientalis)
,”
Ocean Eng.
,
226
, p.
108872
.
9.
DeCew
,
J.
,
Fredriksson
,
D. W.
,
Lader
,
P. F.
,
Chambers
,
M.
,
Howell
,
W. H.
,
Osienki
,
M.
,
Celikkol
,
B.
,
Frank
,
K.
, and
Høy
,
E.
,
2013
, “
Field Measurements of Cage Deformation Using Acoustic Sensors
,”
Aquac. Eng.
,
57
, pp.
114
125
.
10.
Klebert
,
P.
,
Patursson
,
Ø
,
Endresen
,
P. C.
,
Rundtop
,
P.
,
Birkevold
,
J.
, and
Rasmussen
,
H. W.
,
2015
, “
Three-dimensional Deformation of a Large Circular Flexible Sea Cage in High Currents: Field Experiment and Modeling
,”
Ocean Eng.
,
104
, pp.
511
520
.
11.
Huang
,
C.-C.
,
Tang
,
H.-J.
, and
Liu
,
J.-Y.
,
2006
, “
Dynamical Analysis of Net Cage Structures for Marine Aquaculture: Numerical Simulation and Model Testing
,”
Aquac. Eng.
,
35
(
3
), pp.
258
270
.
12.
Huang
,
C.-C.
,
Tang
,
H.-J.
, and
Liu
,
J.-Y.
,
2007
, “
Modeling Volume Deformation in Gravity-Type Cages With Distributed Bottom Weights or a Rigid Tube-Sinker
,”
Aquac. Eng.
,
37
(
2
), pp.
144
157
.
13.
Huang
,
C.-C.
,
Tang
,
H.-J.
, and
Wang
,
B.-S.
,
2010
, “
Numerical Modeling for an In situ Single-Point-Mooring Cage System
,”
IEEE J. Ocean Eng.
,
35
(
3
), pp.
565
573
.
14.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(
5
), pp.
149
154
.
15.
Brebbia
,
C. A.
, and
Walker
,
S.
,
1979
,
Dynamic Analysis of Offshore Structures
,
Newnes-Butterworths
,
London, UK
.
16.
Løland
,
G.
,
1991
, “
Current Forces on and Flow Through Fish Farms
,”
Doctoral dissertation
,
Division of Marine Hydrodynamics, The Norwegian Institute of Technology
,
Trondheim, Norway
.
17.
Tang
,
H.-J.
,
Yang
,
R.-Y.
, and
Yao
,
H.-C.
,
2021
, “
Experimental and Numerical Investigations of a Mooring Line Failure of an Aquaculture Net Cage Subjected to Currents
,”
Ocean Eng.
,
238
, p.
109707
.
18.
Tang
,
H.-J.
,
Yeh
,
P.-H.
,
Yang
,
R.-Y.
, and
Nan
,
F.-H.
,
2022
, “
Numerical Study of an Alternative way of Evaluating the Remaining Volume of a Fish Cage
,”
Proceedings of the 41st International Conference of Ocean, Offshore and Arctic Engineering
, Vol.
85888
,
Hamburg, Germany
,
June 5–10
, p.
V004T05A005
.
19.
Tang
,
H.-J.
,
Yao
,
H.-C.
, and
Yang
,
R.-Y.
,
2022
, “
Experimental and Numerical Studies on Successive Failures of two Mooring Lines of a Net Cage Subjected to Currents
,”
Ocean Eng.
,
266
, p.
113243
.
20.
Goda
,
Y.
,
1999
, “
A Comparative Review on the Functional Forms of Directional Wave Spectrum
,”
Coast. Eng. J.
,
41
(
1
), pp.
1
20
.
You do not currently have access to this content.