Abstract

Vortex has attracted attention because it is the main factor affecting the flow characteristics around offshore structures. This paper researches the flow field variations around a semi-submerged rectangular cylinder (SRC) under four aspect ratios, thereby revealing the bottom vortex effects on the flow field at Reynolds number = 36,300. According to the particle image velocimetry (PIV) data, the renormalization group (RNG) k–ε model is selected as an applicable turbulence model for studying SRC flow characteristics. From the results, the bottom vortex generation and streamwise velocity are inseparable. As the draft increases, the increased range of the bottom vortex would directly interfere with the flow characteristic around the SRC. Since the wake vortex forms a reattachment state when the SRC pierces the free surface, its flow field could be disturbed by the bottom vortex. Furthermore, the bottom vortex also affects the extreme point position of the boundary layer characteristic at the SRC bottom.

References

1.
Hu
,
Z. Z.
,
Greaves
,
D.
, and
Raby
,
A.
,
2016
, “
Numerical Wave Tank Study of Extreme Waves and Wave–Structure Interaction Using OpenFoam®
,”
Ocean Eng.
,
126
(
1
), pp.
329
342
.
2.
Foster
,
A.
,
Rossetto
,
T.
, and
Allsop
,
W.
,
2017
, “
An Experimentally Validated Approach for Evaluating Tsunami Inundation Forces on Rectangular Buildings
,”
Coast. Eng.
,
128
, pp.
44
57
.
3.
Ravinthrakumar
,
S.
,
Kristiansen
,
T.
, and
Ommani
,
B.
,
2020
, “
A Two-Dimensional Experimental and Numerical Study of Moonpools With Recess
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
011201
.
4.
Fan
,
N.
,
Liao
,
K.
,
Wang
,
Q.
,
Fang
,
Z.
, and
Zhou
,
H.
,
2023
, “
A Study of Offshore Wind Turbine Wake Effects in Yaw Conditions Using an Improved Actuator Line Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
3
), p.
030903
.
5.
Lamei
,
A.
, and
Hayatdavoodi
,
M.
,
2024
, “
Water Current Load on Arrays of Rectangular Plates
,”
ASME J. Offshore Mech. Arct. Eng.
,
146
(
1
), p.
011201
.
6.
Zhong
,
W.
,
Deng
,
L.
, and
Xiao
,
Z.
,
2019
, “
Flow Past a Rectangular Cylinder Close to a Free Surface
,”
Ocean Eng.
,
186
(
15
), p.
106118
.
7.
Liu
,
X.
,
Wang
,
X.
,
Xu
,
S.
, and
Ding
,
A.
,
2020
, “
Influences of a Varying Sill at the Seabed on Two-Dimensional Radiation of Linear Water Waves by a Rectangular Buoy
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
4
), p.
041202
.
8.
Wu
,
H.
,
Fernandes
,
A. C.
, and
Cao
,
R.
,
2022
, “
Three-Dimensional Numerical Simulation of a Flat Plate Perpendicularly Submitted to Current With a Blockage Ratio of 0.214: URANS and Detached Eddy Simulation
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
2
), p.
021907
.
9.
Zou
,
P.
,
Cao
,
S.
, and
Cao
,
J.
,
2022
, “
Spanwise Correlation and Coherent Structures of Separated Flow Around Rectangular 5: 1 Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
231
, p.
105211
.
10.
Yoon
,
D.-H.
,
Yang
,
K.-S.
, and
Choi
,
C.-B.
,
2010
, “
Flow Past a Square Cylinder With an Angle of Incidence
,”
Phys. Fluids
,
22
(
4
), p.
043603
.
11.
Rastan
,
M. R.
,
Sohankar
,
A.
, and
Alam
,
M. M.
,
2017
, “
Low-Reynolds-Number Flow Around a Wall-Mounted Square Cylinder: Flow Structures and Onset of Vortex Shedding
,”
Phys. Fluids
,
29
(
10
), p.
103601
.
12.
Bai
,
H.
, and
Alam
,
M. M.
,
2018
, “
Dependence of Square Cylinder Wake on Reynolds Number
,”
Phys. Fluids
,
30
(
1
), p.
015102
.
13.
Jiang
,
H.
, and
Cheng
,
L.
,
2018
, “
Hydrodynamic Characteristics of Flow Past a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
30
(
10
), p.
104107
.
14.
Arslan
,
T.
,
Malavasi
,
S.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2013
, “
Turbulent Flow Around a Semi-Submerged Rectangular Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
4
), p.
041801
.
15.
Duan
,
G.
,
Laima
,
S.
,
Chen
,
W.
, and
Li
,
H.
,
2020
, “
Effects of Leading-Edge Separation on the Vortex Shedding and Aerodynamic Characteristics of an Elongated Bluff Body
,”
J. Wind Eng. Ind. Aerodyn.
,
206
, p.
104356
.
16.
Ji
,
C.
,
Zhang
,
Z.
,
Xu
,
D.
, and
Srinil
,
N.
,
2020
, “
Direct Numerical Simulations of Horizontally Oblique Flows Past Three-Dimensional Circular Cylinder Near a Plane Boundary
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
5
), p.
051903
.
17.
Yin
,
G.
,
Janocha
,
M. J.
, and
Ong
,
M. C.
,
2022
, “
Estimation of Hydrodynamic Forces on Cylinders Undergoing Flow-Induced Vibrations Based on Modal Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
6
), p.
060904
.
18.
Tang
,
T.
,
Zhu
,
H.
,
Li
,
G.
, and
Song
,
J.
,
2023
, “
Comparative Study of the Flow-Induced Vibration of a Circular Cylinder Attached With Front and/or Rear Splitter Plates at a Low Reynolds Number of 120
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
1
), p.
010904
.
19.
Saeedi
,
M.
, and
Wang
,
B.-C.
,
2016
, “
Large-Eddy Simulation of Turbulent Flow Around a Finite-Height Wall-Mounted Square Cylinder Within a Thin Boundary Layer
,”
Flow, Turbul. Combust.
,
97
(
2
), pp.
513
538
.
20.
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2022
, “
Turbulent Flow Around Rectangular Cylinders With Different Streamwise Aspect Ratios
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051304
.
21.
Li
,
M.
,
Li
,
Q.
, and
Shi
,
H.
,
2021
, “
Effect of Sinusoidal Vertical Gust on the Pressure Distributions on and Flow Structures Around a Rectangular Cylinder
,”
Exp. Fluids
,
62
(
7
), p.
148
.
22.
Wang
,
G.
,
Yang
,
F.
,
Wu
,
K.
,
Ma
,
Y.
,
Peng
,
C.
,
Liu
,
T.
, and
Wang
,
L.-P.
,
2021
, “
Estimation of the Dissipation Rate of Turbulent Kinetic Energy: A Review
,”
Chem. Eng. Sci.
,
229
, p.
116133
.
23.
Zhou
,
J.
,
Qiu
,
X.
,
Li
,
J.
, and
Liu
,
Y.
,
2022
, “
Vortex Evolution of Flow Past the Near-Wall Circular Cylinder Immersed in a Flat-Plate Turbulent Boundary Layer
,”
Ocean Eng.
,
260
, p.
112011
.
24.
Ma
,
X.
,
Geisler
,
R.
, and
Schröder
,
A.
,
2017
, “
Experimental Investigation of Separated Shear Flow Under Subharmonic Perturbations Over a Backward-Facing Step
,”
Flow Turbul. Combust.
,
99
(
1
), pp.
71
91
.
25.
Liu
,
I.-H.
,
Riglin
,
J.
,
Schleicher
,
W. C.
, and
Oztekin
,
A.
,
2016
, “
Flow Past a Plate in the Vicinity of a Free Surface
,”
Ocean Eng.
,
111
, pp.
323
334
.
26.
Rastan
,
M.
,
Shahbazi
,
H.
,
Sohankar
,
A.
,
Alam
,
M. M.
, and
Zhou
,
Y.
,
2021
, “
The Wake of a Wall-Mounted Rectangular Cylinder: Cross-Sectional Aspect Ratio Effect
,”
J. Wind Eng. Ind. Aerodyn.
,
213
, p.
104615
.
27.
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Rosetti
,
G. F.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2015
, “
Flow Around Circular Cylinders With Very Low Aspect Ratio
,”
J. Fluid Struct.
,
54
, pp.
122
141
.
28.
Mashhadi
,
A.
,
Sohankar
,
A.
, and
Alam
,
M. M.
,
2021
, “
Flow Over Rectangular Cylinder: Effects of Cylinder Aspect Ratio and Reynolds Number
,”
Int. J. Mech. Sci.
,
195
, p.
106264
.
29.
Amiri
,
M. M.
,
Sphaier
,
S. H.
,
Vitola
,
M. A.
, and
Esperança
,
P. T.
,
2019
, “
URANS Investigation of the Interaction Between the Free Surface and a Shallowly Submerged Underwater Vehicle at Steady Drift
,”
Appl. Ocean Res.
,
84
, pp.
192
205
.
30.
Patruno
,
L.
,
Ricci
,
M.
,
De Miranda
,
S.
, and
Ubertini
,
F.
,
2016
, “
Numerical Simulation of a 5:1 Rectangular Cylinder at Non-null Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
146
157
.
31.
Pereira
,
F. S.
,
Vaz
,
G.
, and
Eça
,
L.
,
2019
, “
Evaluation of RANS and SRS Methods for Simulation of the Flow Around a Circular Cylinder in the Sub-critical Regime
,”
Ocean Eng.
,
186
, p.
106067
.
32.
Abrishamchi
,
A.
, and
Younis
,
B.
,
2012
, “
LES and URANS Predictions of the Hydrodynamic Loads on a Tension-Leg Platform
,”
J. Fluids Struct.
,
28
, pp.
244
262
.
33.
Wijesooriya
,
K.
,
Mohotti
,
D.
,
Chauhan
,
K.
, and
Dias-da Costa
,
D.
,
2019
, “
Numerical Investigation of Scale Resolved Turbulence Models (LES, ELES and DDES) in the Assessment of Wind Effects on Supertall Structures
,”
J. Build. Eng.
,
25
, p.
100842
.
34.
Cao
,
L.-S.
,
Huang
,
F.-I.
,
Liu
,
C.
, and
Wan
,
D.-C.
,
2021
, “
Vortical Structures and Wakes of a Sphere in Homogeneous and Density Stratified Fluid
,”
J. Hydrodyn.
,
33
(
2
), pp.
207
215
.
35.
Malavasi
,
S.
, and
Guadagnini
,
A.
,
2007
, “
Interactions Between a Rectangular Cylinder and a Free-Surface Flow
,”
J. Fluid Struct.
,
23
(
8
), pp.
1137
1148
.
36.
Negri
,
M.
,
Cozzi
,
F.
, and
Malavasi
,
S.
,
2011
, “
Self-Synchronized Phase Averaging of PIV Measurements in the Base Region of a Rectangular Cylinder
,”
Meccanica
,
46
, pp.
423
435
.
37.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1983
, “
Paper 8—The Numerical Computation of Turbulent Flows
,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Patankar
,
S. V.
,
Pollard
,
A.
,
Singhal
,
A. K.
,
Vanka
,
S. P.
, eds.,
Pergamon
, pp.
96
116
.
38.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
39.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
40.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
41.
Meliga
,
P.
,
Cadot
,
O.
, and
Serre
,
E.
,
2016
, “
Experimental and Theoretical Sensitivity Analysis of Turbulent Flow Past a Square Cylinder
,”
Flow Turbul. Combust.
,
97
(
4
), pp.
987
1015
.
42.
Malavasi
,
S.
, and
Guadagnini
,
A.
,
2003
, “
Hydrodynamic Loading on River Bridges
,”
J. Hydraul. Eng.
,
129
(
11
), pp.
854
861
.
43.
Fang
,
X.
,
Dow
,
K.
,
Tachie
,
M. F.
,
Jarrod
,
M.
, and
Wang
,
S.
,
2023
, “
Flow Characteristics Beneath Ice Blocks With Smooth and Rough Undersurfaces
,”
J. Hydraul. Eng.
,
149
(
4
), p.
04023005
.
44.
Fang
,
X.
, and
Tachie
,
M. F.
,
2020
, “
Spatio-temporal Dynamics of Flow Separation Induced by a Forward-Facing Step Submerged in a Thick Turbulent Boundary Layer.
,”
J. Fluid Mech.
,
892
, p.
A40
.
45.
Graziani
,
A.
,
Kerhervé
,
F.
,
Martinuzzi
,
R. J.
, and
Keirsbulck
,
L.
,
2018
, “
Dynamics of the Recirculating Areas of a Forward-Facing Step
,”
Exp. Fluids
,
59
(
10
), pp.
1
18
.
46.
Hattori
,
H.
, and
Nagano
,
Y.
,
2010
, “
Investigation of Turbulent Boundary Layer Over Forward-Facing Step Via Direct Numerical Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
284
294
.
47.
Nematollahi
,
A.
, and
Tachie
,
M. F.
,
2018
, “
Time-Resolved PIV Measurement of Influence of Upstream Roughness on Separated and Reattached Turbulent Flows Over a Forward-Facing Step
,”
AIP Adv.
,
8
(
10
), p.
105110
.
48.
Li
,
C.
,
Zhang
,
H.
,
Zhang
,
H.
,
Sun
,
B.
, and
Yang
,
S.
,
2022
, “
Wave-Attenuation and Hydrodynamic Properties of Twin Pontoon Floating Breakwater With Kelp
,”
Appl. Ocean Res.
,
124
, p.
103213
.
49.
Lander
,
D.
,
Moore
,
D.
,
Letchford
,
C.
, and
Amitay
,
M.
,
2018
, “
Scaling of Square-Prism Shear Layers
,”
J. Fluid Mech.
,
849
, pp.
1096
1119
.
50.
Chu
,
C.-R.
,
Chung
,
C.-H.
,
Wu
,
T.-R.
, and
Wang
,
C.-Y.
,
2016
, “
Numerical Analysis of Free Surface Flow Over a Submerged Rectangular Bridge Deck
,”
J. Hydraul. Eng.
,
142
(
12
), p.
04016060
.
51.
Oudenbroek
,
K.
,
Naderi
,
N.
,
Bricker
,
J. D.
,
Yang
,
Y.
,
Van der Veen
,
C.
,
Uijttewaal
,
W.
,
Moriguchi
,
S.
, and
Jonkman
,
S. N.
,
2018
, “
Hydrodynamic and Debris-Damming Failure of Bridge Decks and Piers in Steady Flow
,”
Geosciences
,
8
(
11
), p.
409
.
You do not currently have access to this content.