Graphical Abstract Figure

M-floating porous plates over (M-1)-trenches

Graphical Abstract Figure

M-floating porous plates over (M-1)-trenches

Close modal

Abstract

This article investigates the interaction of water waves with multiple thin horizontal floating porous plates over multiple trenches at the bottom. Here, the horizontal floating porous plates are placed at a finite distance from each other, and the trenches are in between the plates. Using the linearized theory of water waves, the boundary value problem is solved for velocity potential using Havelock’s expansion and algebraic least-square method. To understand the advantage of multiple porous plates and trenches, the numerical results are plotted for the scattering and dissipation coefficients through different graphs to examine the effect of various parameters. In the direction of the use of a minimal number of porous plates in the absence of trenches, it is observed that the curves almost coincide for the three and four-plate cases, implying three plates will be sufficient for maximum wave energy dissipation and minimal wave transmission. But, for the case of two trenches and in the absence of porous plates, the curves show an oscillatory pattern with harmonic and subharmonic peaks. The study also shows that the oscillating pattern in the curves vanishes when there are two trenches and three porous plates with moderate values of the porous-effect parameter. In the latter case, plates with larger lengths will produce almost zero transmission and dissipate or reflect a major part of the incident wave energy. It is concluded that the above-specific combination of barriers and plates dissipates maximum wave energy and transmits a small amount, providing a safer zone in the trench regions. Thus, multiple navigation channels can be created to overcome the issues of dense vessel traffic arising in a single channel.

References

1.
Jia
,
S.
,
Li
,
C.-L.
, and
Xu
,
Z.
,
2019
, “
Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port
,”
Transp. Sci.
,
53
(
3
), pp.
728
745
.
2.
Lee
,
H. S.
,
Kim
,
S. D.
,
Wang
,
K.-H.
, and
Eom
,
S.
,
2009
, “
Boundary Element Modeling of Multidirectional Random Waves in a Harbor With a Rectangular Navigation Channel
,”
Ocean Eng.
,
36
(
17-18
), pp.
1287
1294
.
3.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2018
, “
Scattering of Surface Gravity Waves Over a Pair of Trenches
,”
Appl. Math. Model.
,
62
, pp.
303
320
.
4.
Lee
,
J.-J.
, and
Ayer
,
R. M.
,
1981
, “
Wave Propagation Over a Rectangular Trench
,”
J. Fluid Mech.
,
110
, pp.
335
347
.
5.
Kirby
,
J. T.
, and
Dalrymple
,
R. A.
,
1983
, “
Propagation of Obliquely Incident Water Waves Over a Trench
,”
J. Fluid Mech.
,
133
, pp.
47
63
.
6.
Ting
,
F. C.
, and
Raichlen
,
F.
,
1986
, “
Wave Interaction With a Rectangular Trench
,”
J. Waterway Port Coastal Ocean Eng.
,
112
(
3
), pp.
454
460
.
7.
Pacheco
,
A.
,
Ferreira
,
Ó.
,
Williams
,
J.
,
Garel
,
E.
,
Vila-Concejo
,
A.
, and
Dias
,
J.
,
2010
, “
Hydrodynamics and Equilibrium of a Multiple-Inlet System
,”
Marine Geology
,
274
(
1-4
), pp.
32
42
.
8.
Chakraborty
,
R.
, and
Mandal
,
B.
,
2014
, “
Water Wave Scattering by a Rectangular Trench
,”
J. Eng. Math.
,
89
(
1
), pp.
101
112
.
9.
Chakraborty
,
R.
, and
Mandal
,
B.
,
2015
, “
Oblique Wave Scattering by a Rectangular Submarine Trench
,”
ANZIAM J.
,
56
(
3
), pp.
286
298
.
10.
Kaur
,
A.
,
Martha
,
S.
, and
Chakrabarti
,
A.
,
2020
, “
An Algebraic Method of Solution of a Water Wave Scattering Problem Involving an Asymmetrical Trench
,”
Comput. Appl. Math.
,
39
, pp.
1807
0302
.
11.
Kaur
,
A.
,
Martha
,
S.
, and
Chakrabarti
,
A.
,
2019
, “
Solution of the Problem of Propagation of Water Waves Over a Pair of Asymmetrical Rectangular Trenches
,”
Appl. Ocean Res.
,
93
, p.
101946
.
12.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2020
, “
Bragg Scattering of Long Waves by an Array of Trenches
,”
Ocean Eng.
,
198
, p.
107004
.
13.
Kar
,
P.
,
Sahoo
,
T.
, and
Behera
,
H.
,
2018
, “
Effect of Bragg Scattering Due to Bottom Undulation on a Floating Dock
,”
Wave Motion
,
90
, pp.
121
138
.
14.
Chwang
,
A. T.
,
1983
, “
A Porous-Wavemaker Theory
,”
J. Fluid. Mech.
,
132
, pp.
395
406
.
15.
Yu
,
X.
, and
Chwang
,
A. T.
,
1994
, “
Wave-induced Oscillation in Harbor With Porous Breakwaters
,”
J. Waterway Port Coastal Ocean Eng.
,
120
(
2
), pp.
125
144
.
16.
Yu
,
X.
, and
Chwang
,
A. T.
,
1994
, “
Water Waves Above Submerged Porous Plate
,”
J. Eng. Mech.
,
120
(
6
), pp.
1270
1282
.
17.
Yip
,
T. L.
,
Sahoo
,
T.
, and
Chwang
,
A. T.
,
2002
, “
Trapping of Surface Waves by Porous and Flexible Structures
,”
Wave Motion
,
35
(
1
), pp.
41
54
.
18.
Behera
,
H.
, and
Sahoo
,
T.
,
2015
, “
Hydroelastic Analysis of Gravity Wave Interaction With Submerged Horizontal Flexible Porous Plate
,”
J. Fluids Struct.
,
54
, pp.
643
660
.
19.
Vijay
,
K.
,
He
,
S.
,
Zhao
,
Y.
,
Liu
,
Y.
, and
Sahoo
,
T.
,
2020
, “
Gravity Wave Interaction With a Submerged Wavy Porous Plate
,”
Ships Offshore Struct.
,
15
(
sup1
), pp.
S123
S133
.
20.
Cho
,
I.
, and
Kim
,
M.
,
2013
, “
Transmission of Oblique Incident Waves by a Submerged Horizontal Porous Plate
,”
Ocean Eng.
,
61
, pp.
56
65
.
21.
Wu
,
J.
,
Wan
,
Z.
, and
Fang
,
Y.
,
1998
, “
Wave Reflection by a Vertical Wall With a Horizontal Submerged Porous Plate
,”
Ocean Eng.
,
25
(
9
), pp.
767
779
.
22.
Evans
,
D. V.
, and
Peter
,
M. A.
,
2011
, “
Asymptotic Reflection of Linear Water Waves by Submerged Horizontal Porous Plates
,”
J. Eng. Math.
,
69
, pp.
135
154
.
23.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Coastal Engineering 1972
,
Vancouver, Canada
,
July 10–14
, pp.
1827
1846
.
24.
Sulisz
,
W.
,
1985
, “
Wave Reflection and Transmission at Permeable Breakwaters of Arbitrary Cross-Section
,”
Coastal Eng.
,
9
(
4
), pp.
371
386
.
25.
Dalrymple
,
R. A.
,
Losada
,
M. A.
, and
Martin
,
P.
,
1991
, “
Reflection and Transmission From Porous Structures Under Oblique Wave Attack
,”
J. Fluid Mech.
,
224
, pp.
625
644
.
26.
Losada
,
I.
,
Silva
,
R.
, and
Losada
,
M.
,
1996
, “
3-d Non-Breaking Regular Wave Interaction With Submerged Breakwaters
,”
Coastal Eng.
,
28
(
1-4
), pp.
229
248
.
27.
Liu
,
Y.
,
Li
,
Y.-C.
,
Teng
,
B.
, and
Dong
,
S.
,
2008
, “
Wave Motion Over a Submerged Breakwater With an Upper Horizontal Porous Plate and a Lower Horizontal Solid Plate
,”
Ocean Eng.
,
35
(
16
), pp.
1588
1596
.
28.
Kee
,
S.
,
2009
, “
Submerged Plate Breakwater Composed of Horizontal Porous Plate and Slightly Inclined Solid Plate
,”
Int. J. Offshore Polar Eng.
,
19
(
1
), pp.
42
50
.
29.
Cho
,
I.
,
Koh
,
H.
,
Kim
,
J.
, and
Kim
,
M.
,
2013
, “
Wave Scattering by Dual Submerged Horizontal Porous Plates
,”
Ocean Eng.
,
73
, pp.
149
158
.
30.
Das
,
S.
, and
Bora
,
S. N.
,
2018
, “
Oblique Water Wave Damping by Two Submerged Thin Vertical Porous Plates of Different Heights
,”
Comput. Appl. Math.
,
37
, pp.
3759
3779
.
31.
Choudhary
,
S.
, and
Martha
,
S.
,
2024
, “
Dissipation of Incident Wave Energy by Two Floating Horizontal Porous Plates Over a Trench Type Bottom
,”
Ships Offshore Struct.
,
19
(
4
), pp.
509
531
.
32.
Sasmal
,
A.
, and
De
,
S.
,
2024
, “
Mitigation of Wave Force and Dissipation of Energy by Multiple Arbitrary Porous Barriers
,”
Waves Random Complex Media
,
34
(
2
), pp.
523
546
.
33.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Gravity Wave Trapping by Series of Horizontally Stratified Wave Absorbers Away From Seawall
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
6
), p.
061201
.
34.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2021
, “
Numerical Investigation on the Wave Dissipating Performance Due to Multiple Porous Structures
,”
ISH J. Hydraulic Eng.
,
27
(
sup1
), pp.
202
219
.
35.
Kar
,
P.
,
Sahoo
,
T.
, and
Meylan
,
M.
,
2020
, “
Bragg Scattering of Long Waves by An Array of Floating Flexible Plates in the Presence of Multiple Submerged Trenches
,”
Phys. Fluids
,
32
, p.
096603
.
36.
Behera
,
H.
, and
Sahoo
,
T.
,
2014
, “
Gravity Wave Interaction With Porous Structures in Two-Layer Fluid
,”
J. Eng. Math.
,
87
, pp.
73
97
.
37.
Anton
,
H.
, and
Rorres
,
C.
,
2013
,
Elementary Linear Algebra: Applications Version
, 9th ed.,
John Wiley & Sons
,
New Delhi
.
38.
Linton
,
C.
,
2001
, “
The Finite Dock Problem
,”
Zeitschrift für angewandte Mathematik und Physik ZAMP
,
52
, pp.
640
656
.
You do not currently have access to this content.