Abstract

The design of monopile foundations for offshore wind turbines (OWTs) is usually performed using simplified (1D) models based on the p-y method. When deriving p-y curves, the main issues arise from the soil reaction profiles (p), commonly obtained by double differentiating the bending moment profiles. Several authors have proposed modified p-y curves for OWT applications derived from experimental analysis conducted using small-scale in situ models, centrifuge models, or numerical analysis using three-dimensional finite element (3D FE) models. This article presents a 3D FE model simulating a monopile installed in sand, which was used to derive monotonic p-y curves. Typical curve fitting methods adopted in the literature for adjusting the bending moment data were investigated, such as the high-order global polynomial, the piecewise polynomial, the smoothing cubic spline, and the single-term Fourier series methods. Moreover, a parametric study was conducted to quantify possible deviations in generating the p-y curves. The number of points used to create each p-y curve and the number of nonlinear soil springs adopted in the 1D model varied. Finally, a guideline for deriving p-y curves from 3D FE models is provided.

References

1.
Arvan
,
P. A.
,
Raju
,
R. D.
, and
Arockiasamy
,
M.
,
2023
, “
Offshore Wind Turbine Monopile Foundation Systems in Multilayered Soil Strata Under Aerodynamic and Hydrodynamic Loads: State-of-the-Art Review
,”
Pract. Period. Struct. Des. Constr.
,
28
(
3
), p.
03123001
.
2.
Schafhirt
,
S.
,
Page
,
A.
,
Eiksund
,
G. R.
, and
Muskulus
,
M.
,
2016
, “
Influence of Soil Parameters on the Fatigue Lifetime of Offshore Wind Turbines With Monopile Support Structure
,”
Energy Procedia
,
94
(
1
), pp.
347
356
.
3.
Gupta
,
B. K.
, and
Basu
,
D.
,
2020
, “
Offshore Wind Turbine Monopile Foundations: Design Perspectives
,”
Ocean Eng.
,
213
(
1
), p.
107514
.
4.
Thieken
,
K.
,
Achmus
,
M.
, and
Lemke
,
K.
,
2015
, “
A New Static P-y Approach for Piles With Arbitrary Dimensions in Sand
,”
Geotechnik
,
38
(
4
), pp.
267
288
.
5.
Velarde
,
J.
, and
Bachynski
,
E. E.
,
2017
, “
Design and Fatigue Analysis of Monopile Foundations to Support the DTU 10
,”
Energy Procedia
,
137
(
1
), pp.
3
13
.
6.
Bayton
,
S. M.
,
Black
,
J. A.
, and
Klinkvort
,
R. T.
,
2018
, “Centrifuge Modelling of Long Term Cyclic Lateral Loading on Monopiles,”
Physical Modelling in Geotechnics
, 1st ed., Vol.
1
,
CRC Press
,
London
, pp.
689
694
.
7.
Sayles
,
S.
,
Stone
,
K. J. L.
,
Diakoumi
,
M.
, and
Richards
,
D. J.
,
2018
, “Centrifuge Model Testing of Fin Piles in Sand,”
Physical Modelling in Geotechnics
, 1st ed., Vol.
1
,
CRC Press
,
London
, pp.
744
747
.
8.
Brinkgreve
,
R.
,
Lisi
,
D.
,
Lahoz
,
M.
, and
Panagoulias
,
S.
,
2020
, “
Validation and Application of a New Software Tool Implementing the PISA Design Methodology
,”
J. Mar. Sci. Eng.
,
8
(
6
), p.
457
.
9.
Burd
,
H. J.
,
Beuckelaers
,
W. J. A. P.
,
Byrne
,
B. W.
,
Gavin
,
K. G.
,
Houlsby
,
G. T.
,
Igoe
,
D. J. P.
,
Jardine
,
R. J.
, et al
,
2020
, “
New Data Analysis Methods for Instrumented Medium-Scale Monopile Field Tests
,”
Géotechnique
,
70
(
11
), pp.
961
969
.
10.
Burd
,
H. J.
,
Taborda
,
D. M. G.
,
Zdravković
,
L.
,
Abadie
,
C. N.
,
Byrne
,
B. W.
,
Houlsby
,
G. T.
,
Gavin
,
K. G.
, et al
,
2020
, “
PISA Design Model for Monopiles for Offshore Wind Turbines: Application to a Marine Sand
,”
Géotechnique
,
70
(
11
), pp.
1048
1066
.
11.
Byrne
,
B. W.
,
Houlsby
,
G. T.
,
Burd
,
H. J.
,
Gavin
,
K. G.
,
Igoe
,
D. J. P.
,
Jardine
,
R. J.
,
Martin
,
C. M.
, et al
,
2020
, “
PISA Design Model for Monopiles for Offshore Wind Turbines: Application to a Stiff Glacial Clay Till
,”
Géotechnique
,
70
(
11
), pp.
1030
1047
.
12.
Taborda
,
D. M. G.
,
Zdravković
,
L.
,
Potts
,
D. M.
,
Burd
,
H. J.
,
Byrne
,
B. W.
,
Gavin
,
K. G.
,
Houlsby
,
G. T.
, et al
,
2020
, “
Finite-Element Modelling of Laterally Loaded Piles in a Dense Marine Sand at Dunkirk
,”
Géotechnique
,
70
(
11
), pp.
1014
1029
.
13.
Page
,
A. M.
,
Klinkvort
,
R. T.
,
Bayton
,
S.
,
Zhang
,
Y.
, and
Jostad
,
H. P.
,
2021
, “
A Procedure for Predicting the Permanent Rotation of Monopiles in Sand Supporting Offshore Wind Turbines
,”
Mar. struct.
,
75
(
1
), p.
102813
.
14.
Winkler
,
E
.,
1868
, Die Lehre von Der Elastizität Und Festigkeit Mit Besonderer Rücksicht Auf Ihre Anwendung in Der Technik: Für Polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, Etc, Dominicius.
15.
Matlock
,
H.
,
1970
, “
Correlation for Design of Laterally Loaded Piles in Soft Clay
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 21–23
, pp.
577
594
.
16.
Reese
,
L. C.
,
Cox
,
W. R.
, and
Koop
,
F. D.
,
1974
, “
Analysis of Laterally Loaded Piles in Sand
,”
Offshore Technology Conference
,
Houston, TX
,
May 5–7
,
Paper No. OTC-2080-MS
.
17.
API
,
2010
,
API RP 2A-WSD: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms
.
18.
DNV
,
2016
,
DNVGL-ST-0126: Support Structures for Wind Turbines
.
19.
Chen
,
Z.
,
Zhang
,
Z.
,
Li
,
W.
,
Wang
,
T.
, and
Zhang
,
J.
,
2023
, “
Numerical Study on the Base Shear Force-Displacement Relationship for Laterally Loaded Monopiles in Dense Sand
,”
Ocean Eng.
,
286
(
1
), p.
115527
.
20.
Xue
,
J.
,
Gavin
,
K.
,
Murphy
,
G.
,
Doherty
,
P.
, and
Igoe
,
D.
,
2016
, “
Optimization Technique to Determine the p-y Curves of Laterally Loaded Stiff Piles in Dense Sand
,”
Geotech. Test. J.
,
39
(
5
), pp.
842
854
.
21.
Haouari
,
H.
, and
Bouafia
,
A.
,
2020
, “
A Centrifuge Modelling and Finite Element Analysis of Laterally Loaded Single Piles in Sand With Focus on P–Y Curves
,”
Period. Polytech., Civ. Eng.
,
64
(
4
), pp.
1064
1074
.
22.
Chortis
,
G.
,
Askarinejad
,
A.
,
Prendergast
,
L. J.
,
Li
,
Q.
, and
Gavin
,
K.
,
2020
, “
Influence of Scour Depth and Type on p–y Curves for Monopiles in Sand Under Monotonic Lateral Loading in a Geotechnical Centrifuge
,”
Ocean Eng.
,
197
(
1
), p.
106838
.
23.
Lee
,
M.
,
Bae
,
K. T.
,
Lee
,
I. W.
, and
Yoo
,
M.
,
2019
, “
Cyclic p-y Curves of Monopiles in Dense Dry Sand Using Centrifuge Model Tests
,”
Appl. Sci.
,
9
(
8
), pp.
1641
.
24.
Li
,
Q.
,
Gavin
,
K. G.
,
Askarinejad
,
A.
, and
Prendergast
,
L. J.
,
2022
, “
Experimental and Numerical Investigation of the Effect of Vertical Loading on the Lateral Behaviour of Monopiles in Sand
,”
Can. Geotech. J.
,
59
(
5
), pp.
652
666
.
25.
Abdel-Rahman
,
K.
, and
Achmus
,
M.
,
2005
, “
Finite Element Modelling of Horizontally Loaded Monopile Foundations for Offshore Wind Energy Converters in Germany
,”
Proceedings of the International Symposium on Frontiers in Offshore Geotechnics
,
Perth, Australia
,
Sept. 19–21
, pp.
391
396
.
26.
Achmus
,
M.
,
Kuo
,
Y.-S.
, and
Abdel-Rahman
,
K.
,
2009
, “
Behavior of Monopile Foundations Under Cyclic Lateral Load
,”
Comput. Geotech.
,
36
(
5
), pp.
725
735
.
27.
Ma
,
H.
,
Yang
,
J.
, and
Chen
,
L.
,
2017
, “
Numerical Analysis of the Long-Term Performance of Offshore Wind Turbines Supported by Monopiles
,”
Ocean Eng.
,
136
(
1
), pp.
94
105
.
28.
Achmus
,
M.
,
Thieken
,
K.
,
Saathoff
,
J.-E.
,
Terceros
,
M.
, and
Albiker
,
J.
,
2019
, “
Un- and Reloading Stiffness of Monopile Foundations in Sand
,”
Appl. Ocean Res.
,
84
(
1
), pp.
62
73
.
29.
Wang
,
H.
,
Wang
,
L. Z.
,
Hong
,
Y.
,
He
,
B.
, and
Zhu
,
R. H.
,
2020
, “
Quantifying the Influence of Pile Diameter on the Load Transfer Curves of Laterally Loaded Monopile in Sand
,”
Appl. Ocean Res.
,
101
(
1
), p.
102196
.
30.
Dunnavant
,
T. W.
,
1986
, “
Experimental and Analytical Investigation of the Behavior of Single Piles in Overconsolidated Clay Subjected to Cyclic Lateral Loads
,”
Ph.D. thesis
,
University of Houston
,
Houston, TX
.
31.
Wilson
,
D. W.
,
1998
, “
Soil-Pile-Superstructure Interaction in Liquefying Sand and Soft Clay
,”
Ph.D. thesis
,
University of California
,
Los Angeles, CA
.
32.
Choo
,
Y. W.
, and
Kim
,
D.
,
2016
, “
Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests
,”
J. Geotech. Geoenviron. Eng.
,
142
(
1
), p.
04015058
.
33.
Mezazigh
,
S.
, and
Levacher
,
D.
,
1998
, “
Laterally Loaded Piles in Sand: Slope Effect on P-Y Reaction Curves
,”
Can. Geotech. J.
,
35
(
3
), pp.
433
441
.
34.
Yang
,
K.
, and
Liang
,
R.
,
2006
, “
Methods for Deriving p-y Curves From Instrumented Lateral Load Tests
,” www.astm.org
35.
Dassault Systèms
,
2017
,
Abaqus/CAE 2018
.
36.
Oztoprak
,
S.
, and
Bolton
,
M. D.
,
2013
, “
Stiffness of Sands Through a Laboratory Test Database
,”
Géotechnique
,
63
(
1
), pp.
54
70
.
37.
Lopes
,
G. K.
,
de Sousa
,
J. R. M.
,
de Almeida
,
M. C. F.
, and
de Almeida
,
M. S. S.
,
2023
, “
A Numerical Methodology to Predict the Lateral Load Response of Monopiles Installed in SAND Considering Soil Stiffness Degradation
,”
Ocean Eng.
,
270
(
1
), p.
113723
.
38.
Randolph
,
M. F.
, and
House
,
A. R.
,
2001
, “
The Complementary Roles of Physical and Computational Modelling
,”
Int. J. Phys. Modell. Geotech.
,
1
(
1
), pp.
1
8
.
39.
Guimarães
,
M. P. P.
,
Trejo
,
P.
,
Oliveira
,
J. R. M. S.
,
Lukiantchuki
,
J. A.
,
Almeida
,
M. S. S.
, and
Almeida
,
M. C. F.
,
2015
, “
Centrifuge Modeling of Lateral Soil-Pipe Interaction
,”
15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering
,
Buenos Aires, Argentina
,
Nov. 15–18
, pp.
1734
1741
.
40.
Barra
,
M. F. W.
,
2020
, “
Centrifuge Modelling of Monopile Foundation for Offshore Wind Turbines
,”
MSc. thesis
,
Federal University of Rio de Janeiro
,
Rio de Janeiro, Brazil
.
41.
Gomes
,
N. F.
,
2020
, “
Estudo de Parâmetros Geotécnicos Estáticos e Dinâmicos de Areias Quartzosa e Carbonatadas
,”
MSc. dissertation
,
Federal University of Rio de Janeiro
.
42.
Ong
,
D. E. L.
,
Sim
,
Y. S.
, and
Leung
,
C. F.
,
2018
, “
Performance of Field and Numerical Back-Analysis of Floating Stone Columns in Soft Clay Considering the Influence of Dilatancy
.”
Int. J. Geomech.
,
18
(
10
), p.
04018135
.
43.
Mohanty
,
P.
, and
Samanta
,
M.
,
2015
, “
Experimental and Numerical Studies on Response of the Stone Column in Layered Soil
,”
Int. J. Geosynth. Ground Eng.
,
1
(
3
), p.
27
.
44.
Achmus
,
M.
,
Abdel-Rahman
,
K.
, and
Peralta
,
P.
,
2005
, “
On the Design of Monopile Foundations With Respect to Static and Quasi-Static Cyclic Loading
,”
Copenhagen Offshore Wind International Conference
,
Copenhagen, Denmark
,
Oct. 26–28
, pp.
1
9
.
45.
Achmus
,
M.
,
Thieken
,
K.
, and
Lemke
,
K.
,
2015
, “
Evaluation of p-y Approaches for Large-Diameter Monopiles in Sand
,”
Int. J. Offshore Polar Eng.
,
25
(
02
), pp.
134
144
. .
ISOPE-15-25-2-134
.
46.
DNV
,
2018
,
DNVGL-ST-0126: Support Structures for Wind Turbines
.
47.
Sørensen
,
S. H.
,
2012
, “
Soil-Structure Interaction for Non-Slender Large-Diameter Offshore Monopiles
,”
Ph.D. thesis
,
Department of Civil Engineering, Aalborg University
,
Denmark
.
48.
Sørensen
,
S. H.
,
Ibsen
,
L. B.
, and
Augustensen
,
A. H.
, “
Effects of Diameter on Initial Stiffness of p-y Curves for Large-Diameter Piles in Sand
,”
Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering
,
Trondheim, Norway
,
June 2–4
, pp.
907
912
.
49.
Kallehave
,
D.
,
Thilsted
,
C. L.
, and
Liingaard
,
M. A.
,
2012
, “
Modification of the API p-y Formulation of Initial Stiffness of Sand
,”
Offshore Site Investigation and Geotechnics: Integrated Technologies - Present and Future
,
London, UK
,
Sept. 12–14
,
SUT-OSIG-12-50
.
50.
He
,
B.
,
Lai
,
Y.
,
Wang
,
L.
,
Hong
,
Y.
, and
Zhu
,
R.
,
2019
, “
Scour Effects on the Lateral Behavior of a Large-Diameter Monopile in Soft Clay: Role of Stress History
,”
J. Mar. Sci. Eng.
,
7
(
6
), pp.
170
.
51.
MARINTEK
,
2017
,
RIFLEX User Guide
.
52.
Lopes
,
G. K.
,
de Sousa
,
J. R. M.
,
de Almeida
,
M. C. F.
, and
de Almeida
,
M. D. S. S.
,
2023
, “
A Numerical Investigation on the Derivation of p-y Curves for Monopile Foundations Installed in Sand
,”
Proceedings of the 42nd OMAE Conference
,
Melbourne, Australia
,
June 11–16
,
OMAE2023-103227
.
53.
Andreotti
,
G.
, and
Calvi
,
G. M.
,
2021
, “
Design of Laterally Loaded Pile-Columns Considering SSI Effects: Strengths and Weaknesses of 3D, 2D, and 1D Nonlinear Analysis
,”
Earthquake Eng. Struct. Dyn.
,
50
(
3
), pp.
863
888
.
54.
Thieken
,
K.
,
Achmus
,
M.
,
Lemke
,
K.
, and
Terceros
,
M.
,
2015
, “
Evaluation of p-y Approaches for Large-Diameter Monopiles in Sand
,”
Int. J. Offshore Polar Eng.
,
25
(
2
), pp.
134
144
.
55.
Klinger
,
A.
,
1967
, “
The Vandermonde Matrix
,”
Am. Math. Mon.
,
74
(
5
), pp.
571
.
56.
PTC Inc.
,
2015
,
MathCad 15.0
.
57.
Ong
,
D. E.
,
Leung
,
C. E.
, and
Chow
,
Y. K.
,
2006
, “
Pile Behavior Due to Excavation-Induced Soil Movement in Clay. I: Stable Wall
,”
J. Geotech. Geoenviron. Eng.
,
132
(
1
), pp.
36
44
.
You do not currently have access to this content.