Fouling of a piping system refers to the formation of deposits on pipe walls, which can severely impede fluid flow. The food, dairy, and chemical processing industries usually combat the fouling of piping systems through extensive cleaning or complete replacement of the systems, usually on an emergency basis. This paper describes the development of a model which permits real time monitoring of the overall fouling in a piping system and provides insight into the behavior and response trends of piping system fouling to changes in process operating parameters. It facilitates the prediction of both the rate of fouling and the useful life of the piping system, thereby avoiding emergency shutdowns. This paper also describes the implementation of the model in an existing industrial process plant where it was found to accurately monitor actual fouling behavior. The results of the model demonstrate the influence of Reynolds number upon the fouling of this industrial process piping system. This paper also presents a summary of previous fouling research.

1.
Beal
S. K.
,
1970
, “
Deposition of Particles in Turbulent Flow on Channel or Pipe Walls
,”
Nuclear Science and Engineering
, Vol.
40
, pp.
1
11
.
2.
Bott, T. R., and Walker, R. A., 1971, “Fouling in Heat Transfer Equipment,” The Chemical Engineer, No. 255, pp. 391–395.
3.
Bott
T. R.
, and
Gudmundsson
J. S.
,
1977
, “
Deposition of Paraffin Wax from Kerosene in Cooled Heat Exchanger Tubes
,”
The Canadian Journal of Chemical Engineering
, Vol.
55
, pp.
381
385
.
4.
Bott, T. R., 1981, “Fouling Due to Liquid Solidification,” Fouling of Heat Transfer Equipment, eds., E. F. C. Somerscales and J. G. Knudsen, Hemisphere, Washington, DC, pp. 201–226.
5.
Bott, T. R., 1988a, “General Fouling Problems,” Fouling Science and Technology, eds., L F. Melo, T. R., Bott, and C. A. Bernardo, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–14.
6.
Bott, T. R., 1988b, “Crystallisation Fouling: Basic Science and Models,” Fouling Science and Technology, eds., L. F. Melo, T. R. Bott, and C. A. Bernardo, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 251–260.
7.
Braun, R., and Hausler, R. H., 1976, “Contribution to the Understanding of Fouling Phenomena in the Petroleum Industry,” presented at the 16th National Heat Transfer Conference, Paper No. 76-CSME/CSChE-23.
8.
Chan
S. H.
,
Rau
H.
,
DeBellis
C
, and
Neusen
K. F.
,
1988
, “
Silica Fouling of Heat Transfer Equipment: Experiments and Model
,”
ASME Journal of Heat Transfer
, Vol.
110
, pp.
841
849
.
9.
Churchill, S. W., 1977, “Friction Factor Equation Spans All Fluid Flow Regimes,” Chemical Engineering, Nov., pp. 91–92.
10.
Dickakian
G.
,
1989
, “
Crude Oil Fouling Control by a Fouling Analyzer
,” Proceedings of the 1989 National Heat Transfer Conference, Heat Transfer Equipment Fundamentals, Design, Applications and Operating Problems,
ASME HTD
-Vol.
108
, pp.
331
336
.
11.
Dugan
C. F.
,
Van Nostrand
W. L
., and
Haluska
J. L.
,
1978
, “
How Antifoulants Reduce the Energy Consumption of Refineries
,”
Chemical Engineering Progress
, Vol.
74
, No.
5
, pp.
53
57
.
12.
Dunqi
X.
, and
Knudsen
J. G.
,
1986
, “
Functional Correlation of Surface Temperature and Flow Velocity on Fouling of Cooling Tower Water
,”
Heat Transfer Engineering
, Vol.
7
, No.
1–2
, pp.
63
71
.
13.
Epstein, N., 1978,“Fouling in Heat Exchangers,” Heat Transfer 1978—Proceedings of the Sixth International Heat Transfer Conference, Hemisphere, Washington, DC, Vol. 6, pp. 235–253.
14.
Epstein, N., 1981, “Fouling: Technical Aspects (Afterword to Fouling in Heat Exchangers),” Fouling of Heat Transfer Equipment, eds., E. F. C. Somerscales and J. G. Knudsen, Hemisphere, Washington, DC, pp. 31–53.
15.
Epstein
N.
,
1983
, “
Thinking About Heat Transfer Fouling: A 5 ×5 Matrix
,”
Heat Transfer Engineering
, Vol.
4
, No.
1
, pp.
43
56
.
16.
Epstein, N., 1988a, “General Thermal Fouling Models,” Fouling Science and Technology, eds., L. F. Melo, T. R. Bott, and C. A. Bernardo, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 15–30.
17.
Epstein, N., 1988b, “Particulate Fouling of Heat Transfer Surfaces: Mechanisms and Models,” Fouling Science and Technology, eds., L. F. Melo, T. R. Bott, and C. A. Bernardo, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 143–164.
18.
Fischer
P.
,
Suitor
J. W.
, and
Ritter
R. B.
,
1975
, “
Fouling Measurement Techniques
,”
Chemical Engineering Progress
, Vol.
17
, No.
7
, pp.
66
72
.
19.
Fryer
P. J.
, and
Slater
N. K. H.
,
1985
, “
A Direct Simulation Procedure for Chemical Reaction Fouling in Heat Exchangers
,”
The Chemical Engineering Journal
, Vol.
31
, pp.
97
107
.
20.
Hasson
D.
,
Avriel
M.
,
Resnick
W.
,
Rozenman
T.
, and
Windreich
S.
,
1968
, “
Mechanism of Calcium Carbonate Scale Deposition on Heat Transfer Surfaces
,”
I&EC Fundamentals
, Vol.
7
, No.
1
, pp.
59
65
.
21.
Hasson
D.
, and
Zahavi
J.
,
1970
, “
Mechanism of Calcium Sulfate Scale Deposition on Heat Transfer Surfaces
,”
I&EC Fundamentals
, Vol.
9
, No.
1
, pp.
1
10
.
22.
Hasson, D., 1981, “Precipitation Fouling,” Fouling of Heat Transfer Equipment, eds., E. F. C. Somerscales and J. G. Knudsen, Hemisphere, Washington, DC, pp. 527–568.
23.
Kern
D. Q.
, and
Seaton
R. E.
,
1959
a, “
A Theoretical Analysis of Thermal Surface Fouling
,”
British Chemical Engineering
, Vol.
4
, No.
5
, pp.
258
262
.
24.
Kern
D. Q.
, and
Seaton
R. E.
,
1959
b, “
Surface Fouling: How To Calculate Limits
,”
Chemical Engineering Progress
, Vol.
55
, No.
6
, pp.
71
73
.
25.
Knudsen, J. G., 1984, “Fouling of Heat Exchangers: Are We Solving the Problem?,” Chemical Engineering Progress, Feb., pp. 63–69.
26.
Lira
R.
, and
Sengupta
S.
,
1989
, “
Effects of Wall Shear on Biofilm Growth, Heat Transfer and Fluid Resistance in Shell and Tube Heat Exchangers
,” Proceedings of the 1989 National Heat Transfer Conference,
ASME HTD
-Vol.
129
, pp.
101
109
.
27.
Perera, W. G., and Rafique, K., 1976, “Coking in a Fired Heater,” The Chemical Engineer, Feb., pp. 107–111.
28.
Picologlou
B. F.
,
Zelver
N.
, and
Characklis
W. G.
,
1980
, “
Biofllm Growth and Hydraulic Performance
,”
Journal of the Hydraulics Division
, Vol.
106
, No.
HY5
, Pt. 1, pp.
733
746
.
29.
Pinheiro, J. deD. R. S., 1981, “Fouling of Heat Transfer Surfaces,” Heat Exchangers: Thermal Hydraulic Fundamentals and Design, eds., S. Kakac, A. E. Bergles, and F. Mayinger, McGraw-Hill, New York, NY, pp. 1013–1035.
30.
Pinheiro
M. M.
,
Melo
L. F.
,
Bott
T. R.
,
Pinheiro
J. D.
, and
Leit˜o
L.
,
1988
, “
Surface Phenomena and Hydrodynamic Effects on the Deposition of Pseudomonas Fluorescens
,”
The Canadian Journal of Chemical Engineering
, Vol.
66
, pp.
63
67
.
31.
Pritchard, A. M., 1981, “Fouling: Science or Art? An Investigation of Fouling and Anti-Fouling Measures in the British Isles,” Fouling of Heat Transfer Equipment, eds., E. F. C. Somerscales and J. G. Knudsen, Hemisphere, Washington, DC, pp. 513–523.
32.
Reitzer
B. J.
,
1964
, “
Rate of Scale Formation in Tubular Heat Exchangers
,”
I&EC Process Design, and Development
, Vol.
3
, No.
4
, pp.
345
348
.
33.
Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, New York, NY.
34.
Somerscales, E. F. C., 1981, “Corrosion Fouling,” Fouling in Heat Exchange Equipment, eds., J. M. Chenoweth and M. Impagliazzo, ASME, New York, NY, pp. 17–27.
35.
Somerscales
E. F. C
, and
Kassemi
M.
,
1987
, “
Fouling Due to Corrosion Products Formed on a Heat Transfer Surface
,”
ASME Journal of Heat Transfer
, Vol.
109
, pp.
267
271
.
36.
Somerscales
E. F. C.
, and
Sanatgar
H.
,
1989
, “
Investigation of the Deposit Removal Processes on a Fouled Surface
,” Proceedings of the 1989 National Heat Transfer Conference, Heat Transfer Equipment Fundamentals, Design, Applications and Operating Problems,
ASME HTD
-Vol.
108
, pp.
261
271
.
37.
Somerscales
E. F. C
,
1990
, “
Fouling of Heat Transfer Surfaces: An Historical Review
,”
Heat Transfer Engineering
, Vol.
11
, No.
1
, pp.
19
36
.
38.
Suitor
J. W.
,
Marner
W. J.
, and
Ritter
R. B.
,
1977
, “
The History and Status of Research in Fouling of Heat Exchangers in Cooling Water Service
,”
Canadian Journal of Chemical Engineering
, Vol.
55
, pp.
374
380
.
39.
Taborek
J.
,
Aoki
T.
,
Ritter
R. B.
,
Palen
J. W.
, and
Knudsen
J. G.
,
1972
a, “
Fouling: The Major Unresolved Problem in Heat Transfer
,”
Chemical Engineering Progress
, Vol.
68
, No.
2
, pp.
59
67
.
40.
Taborek
J.
,
Aoki
T.
,
Ritter
R. B.
,
Palen
J. W.
, and
Knudsen
J. G.
,
1972
b, “
Predictive Methods for Fouling Behavior
,”
Chemical Engineering Progress
, Vol.
68
, No.
7
, pp.
69
78
.
41.
Yung
B. P. K.
,
Merry
H.
, and
Bott
T. R.
,
1989
, “
The Role of Turbulent Bursts in Particle Re-Entrainment in Aqueous Systems
,”
Chemical Engineering Science
, Vol.
44
, No.
4
, pp.
873
882
.
This content is only available via PDF.
You do not currently have access to this content.