Using Kim’s delayed hydride cracking (DHC) model, this study reanalyzes the critical temperatures for DHC initiation and arrest in Zr–2.5Nb tubes that had previously been investigated with the previous DHC models. At the test temperatures above 180°C, DHC initiation temperatures fell near the terminal solid solubility for precipitation temperatures, requiring some undercooling or ΔT from the terminal solid solubility for dissolution (TSSD) temperatures, and increased toward TSSD with the number of thermal cycles. At the test temperatures below 180°C, DHC initiation occurred at temperatures near TSSD with little ΔT. DHC arrest occurred on heating toward TSSD where the hydrogen concentration difference between the bulk region and a crack tip ΔC decreased to a minimum ΔCmin, under which nucleation of the hydrides was restrained. ΔCmin after the first thermal cycle increased with increasing temperature, demonstrating that nucleation of the hydrides becomes more difficult with increasing temperatures. Different DHC initiation and arrest temperatures with the test temperatures or hydrogen concentrations are discussed in view of a supersaturation of hydrogen (ΔC) for nucleation of hydrides in the zirconium matrix.

1.
Dutton
,
R.
,
Nuttall
,
K.
,
Puls
,
M. P.
, and
Simpson
,
L. A.
, 1977, “
Mechanisms of Hydrogen Induced Delayed Cracking in Hydride Forming Materials
,”
Metall. Trans.
,
8A
, pp.
1553
1562
. 0026-086X
2.
Puls
,
M. P.
,
Simpson
,
L. A.
, and
Dutton
,
R.
, 1982,
Fracture Problems and Solutions in the Energy Industry
,
L. A.
Simpson
, ed.,
Pergamon
,
Oxford
, pp.
13
25
.
3.
Coleman
,
C. E.
, and
Ambler
,
J. F. R.
, 1979, “
Delayed Hydrogen Cracking in Zr–2.5 wt.% Nb Alloy
,”
Reviews on Coatings and Corrosion
,
3
, Freund, Israel, pp.
105
157
.
4.
Shi
,
S. Q.
,
Shek
,
G. K.
, and
Puls
,
M. P.
, 1995, “
Hydrogen Concentration Limit and Critical Temperatures for Delayed Hydride Cracking in Zirconium Alloys
,”
J. Nucl. Mater.
0022-3115,
218
, pp.
189
201
.
5.
Pan
,
Z. L.
,
Ritchie
,
I. G.
, and
Puls
,
M. P.
, 1996, “
The Terminal Solid Solubility of Hydrogen and Deuterium in Zr–2.5Nb Alloys
,”
J. Nucl. Mater.
0022-3115,
228
, pp.
227
237
.
6.
Slattery
,
G. F.
, 1967, “
The Terminal Solubility of Hydrogen in Zirconium Alloys Between 30°C and 400°C
,”
J. Inst. Met.
,
95
, pp.
43
47
. 0020-2975
7.
Puls
,
M. P.
, 1984, “
Elastic and Plastic Accommodation Effects on Metal-Hydride Solubility
,”
Acta Metall.
0001-6160,
32
, pp.
1259
1269
.
8.
Eadie
,
R. L.
, and
Coleman
,
C. E.
, 1989, “
Effect of Stress on Hydride Precipitation in Zirconium-2.5% Niobium and on Delayed Hydride Cracking
,”
Scr. Metall.
,
23
, pp.
1865
1870
. 0036-9748
9.
Eadie
,
R. L.
,
Metzger
,
D. R.
, and
Leger
,
M.
, 1993, “
The Thermal Ratchetting on Hydrogen in Zirconium-Niobium—An Illustration Using Finite Element Modeling
,”
Scr. Metall.
,
29
, pp.
335
340
. 0036-9748
10.
Schofield
,
J. S.
,
Darby
,
E. C.
, and
Gee
,
C. F.
, 2000, “
Temperature and Hydrogen Concentration Limits for Delayed Hydride Cracking in Irradiated Zircaloy
,” Zirconium in the Nuclear Industry, ASTM STP 1423, pp.
339
357
.
11.
Kim
,
Y. S.
, 2005, “
Driving Force For Delayed Hydride Cracking of Zirconium Alloys
,”
Met. Mater. Int.
1598-9623,
11
, pp.
29
38
.
12.
Kim
,
Y. S.
, 2007, “
Precipitation of Crack Tip Hydrides in Zirconium Alloys
,”
J. Alloys Compd.
,
429
, pp.
221
226
. 0925-8388
13.
Kim
,
Y. S.
,
Kim
,
K. S.
, and
Cheong
,
Y. M.
, 2006, “
Delayed Hydride Crack Velocity With the Direction of an Approach to Temperature
,”
J. Nucl. Sci. Technol.
0022-3131,
43
, pp.
1120
1127
.
14.
Kim
,
Y. S.
,
Ahn
,
S. B.
, and
Cheong
,
Y. M.
, 2006,
International Meeting on LWR Fuel Performance (Top Fuel 2006)
, Salamanca, Spain, Paper No. 10.23–26.
15.
Ambler
,
J. F. R.
, 1984, “
Effect of Directional Approach to Temperature on the Delayed Hydride Cracking Behavior of Cold-Worked Zr–2.5Nb
,” Zirconium in the Nuclear Industry, ASTM STP 824, pp. 653–674.
16.
Root
,
J. H.
, and
Fong
,
R. W. L.
, 1996, “
Neutron Diffraction Study of the Precipitation and Dissolution of Hydrides in Zr–2.5Nb Pressure Tube Material
,”
J. Nucl. Mater.
,
232
, pp.
75
82
. 0022-3115
17.
Root
,
J. H.
,
Small
,
W. M.
,
Khatamian
,
D.
, and
Woo
,
O. T.
, 2003, “
Kinetics of the δ to γ Zirconium Hydride Transformation in Zr–2.5Nb
,”
Acta Mater.
,
51
, pp.
2041
2053
. 1359-6454
18.
Birnbaum
,
H. K.
,
Grossbeck
,
M. L.
, and
Amano
,
M.
, 1976, “
Hydride Precipitation in Nb and Some Properties of NbH
,”
J. Less Common Met.
,
49
, pp.
357
370
. 0022-5088
19.
Coleman
,
C. E.
, and
Ambler
,
J. F. R.
, 1983, “
Solubility of Hydrogen Isotopes in Stressed Hydride Forming Metals
,”
Scr. Metall.
0036-9748,
17
, pp.
77
82
.
20.
Kim
,
Y. S.
, and
Park
,
S. S.
, 2008, “
Stage I and II Behaviors of Delayed Hydride Cracking Velocity in Zirconium Alloys
,”
J. Alloys Compd.
0925-8388,
453
, pp.
210
214
.
21.
Perovic
,
V.
,
Weatherly
,
G. C.
,
MacEwen
,
S. R.
, and
Leger
,
M.
, 1992, “
The Influence of Prior Deformation on Hydride Precipitation in Zircaloy
,”
Acta Metall.
,
40
, pp.
363
372
. 0001-6160
22.
Northwood
,
D. O.
, and
Kosasih
,
U.
, 1983, “
Hydrides and Delayed Hydrogen Cracking in Zirconium and Its Alloys
,”
Int. Met. Rev.
0308-4590,
28
, pp.
92
121
.
23.
Cann
,
C. D.
, and
Atrens
,
A.
, 1980, “
A Metallographic Study of the Terminal Solubility of Hydrogen in Zirconium at Low Hydrogen Concentrations
,”
J. Nucl. Mater.
,
88
, pp.
42
50
. 0022-3115
24.
Mishra
,
S.
, and
Asundi
,
M. M.
, 1974, “
Zirconium in Nuclear Applications
,” American Society for Testing and Materials, ASTM STP 551, pp.
63
71
.
You do not currently have access to this content.