The significant growth in offshore operations increases the risk of a pipeline rupture, even considering the high standards of safety involved. Throughout a submarine leakage, four different amounts of oil may be accounted. The first one is the oil volume released until the leakage detection. The second one is the volume leaked throughout mitigation initiatives (e.g., pump shutdown and valve closure). The third parcel is the amount released by gravitational flow. Finally, the fourth and last amount of oil is released due to the water-oil entrainment, generally known as advective migration. Normally, a considerable amount of oil is released in this step. It begins just after the internal pipeline pressure becomes equal to the external one. The present work continues to introduce a mathematical alternative approach, based on the theories of perturbation and unstable immiscible displacement, to accurately estimate the leakage kinetics and the amount of oil released by the advective migration phenomenon. Situations considering different hole sizes and thicknesses were tested experimentally and through simulations. Additional experiments were accomplished using smooth and rough edge surfaces, besides different slopes (using the horizontal plane as reference). Those experiments permitted a preliminary evaluation of the importance of these factors. The results obtained with the model showed good agreement with the experimental data in many situations considered.

1.
Johansen
,
O.
,
Rye
,
H.
, and
Cooper
,
C.
, 2003, “
DeepSpill—Field Study of a Simulated Oil and Gas Blowout in Deep Water
,”
Spill Sci. Technol. Bull.
,
8
, pp.
433
443
. 1353-2561
2.
Na
,
W. -B.
, and
Kundu
,
T.
, 2002, “
Underwater Pipeline Inspection Using Guided Waves
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
(
2
), pp.
196
200
.
3.
Yoshikawa
,
M.
, and
Katoh
,
A.
, 2006, “
A Failure Assessment Method for a Pipe Bend Subjected to Both a Bending Moment and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
(
4
), pp.
605
617
.
4.
Sugioka
,
S. -I.
,
Kojima
,
T.
,
Nakata
,
K.
, and
Horigushi
,
F.
, 1999, “
A Numerical Simulation of an Oil Spill in Tokyo Bay
,”
Spill Sci. Technol. Bull.
,
5
(
1
), pp.
51
61
. 1353-2561
5.
Kranenburg
,
C.
, 1984, “
Exchange Flow of Oil and Sea-Water in a Ruptured Submarine Pipeline
,”
Appl. Ocean Res.
,
6
(
1
), pp.
23
30
. 0141-1187
6.
Reed
,
M.
,
Emilsen
,
M. H.
,
Hetland
,
B.
,
Johansen
,
O.
,
Buffington
,
S.
, and
Hoverstad
,
B.
, 2006, “
Numerical Model for Estimation of Pipeline Oil Spill Volumes
,”
Environ. Modell. Software
,
21
, pp.
178
189
. 1364-8152
7.
Gemmell
,
A. R.
, and
Epstein
,
N.
, 1962, “
Numerical Analysis of Stratified Laminar Flow of Two Immiscible Newtonian Liquids in a Circular Pipe
,”
Can. J. Chem. Eng.
,
40
, pp.
215
224
. 0008-4034
8.
Bentwich
,
M.
, 1976, “
Two-Phase Axial Laminar Flow in a Pipe With Naturally Curved Interface
,”
Chem. Eng. Sci.
,
31
, pp.
71
76
. 0009-2509
9.
Pacek
,
A. W.
, and
Nienow
,
A. W.
, 1995, “
A Problem for the Description of Turbulent Dispersed Liquid-Liquid Systems
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
323
328
. 0301-9322
10.
Joseph
,
D. D.
,
Bai
,
R.
,
Chen
,
K. P.
, and
Renardy
,
Y. Y.
, 1997, “
Core-Annular Flows
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
65
90
. 0066-4189
11.
Chen
,
H. Y.
, and
Jasnow
,
D.
, 2000, “
Interface and Contact Line Motion in a Two Phase Fluid Under Shear Flow
,”
Phys. Rev. Lett.
0031-9007,
85
(
8
), pp.
1686
1689
.
12.
Ng
,
T. S.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
, 2001, “
Interface Shapes for Two-Phase Laminar Stratified Flow in a Circular Pipe
,”
Int. J. Multiphase Flow
,
27
, pp.
1301
1311
. 0301-9322
13.
Hapanowicz
,
H.
, and
Troniewski
,
L.
, 2002, “
Two-Phase Flow of Liquid-Liquid Mixture in the Range of the Water Droplet Pattern
,”
Chem. Eng. Process.
,
41
, pp.
165
172
. 0255-2701
14.
Brauner
,
N.
, and
Ullmann
,
A.
, 2002, “
Modeling of Phase Inversion Phenomenon in Two-Phase Pipe Flows
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
1177
1204
.
15.
Ullmann
,
A.
,
Goldstein
,
A.
,
Zamir
,
M.
, and
Brauner
,
N.
, 2004, “
Closure Relations for the Shear Stresses in Two-Fluid Models for Laminar Stratified Flow
,”
Int. J. Multiphase Flow
,
30
, pp.
877
900
. 0301-9322
16.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
17.
Gorelik
,
D.
, and
Brauner
,
N.
, 1999, “
The Interface Configuration in Two-Phase Stratified Pipe Flow
,”
Int. J. Multiphase Flow
0301-9322,
25
, pp.
977
1007
.
18.
Biberg
,
D.
, and
Halvorsen
,
G.
, 2000, “
Wall and Interfacial Shear Stress in Pressure Driven Two-Phase Laminar Stratified Pipe Flow
,”
Int. J. Multiphase Flow
,
26
, pp.
1645
1673
. 0301-9322
19.
Meier
,
M.
,
Yadigaroglu
,
G.
, and
Smith
,
B. L.
, 2002, “
A Novel Technique for Including Surface Tension in PLIC-VOF Methods
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
61
73
.
20.
Volpe Della
,
C.
,
Maniglio
,
D.
,
Morra
,
M.
, and
Siboni
,
S.
, 2002, “
The Determination of a ‘Stable-Equilibrium’ Contact Angle on Heterogeneous and Rough Surfaces
,”
Colloids Surf., A
0927-7757,
206
, pp.
47
67
.
21.
Kondic
,
L.
,
Palffy-Muhoray
,
P.
, and
Shelley
,
M.
, 1996, “
Models of Non-Newtonian Hele–Shaw Flow
,”
Phys. Rev. E
1063-651X,
54
(
5
), pp.
R4536
R4539
.
22.
Gorodtsov
,
V. A.
, and
Yentov
,
V. M.
, 1997, “
Instability of the Displacement Fronts of Non-Newtonian Fluids in a Hele–Shaw Cell
,”
J. Appl. Math. Mech.
,
61
(
1
), pp.
111
126
. 0021-8928
23.
Miranda
,
J. A.
, and
Widom
,
M.
, 1998, “
Radial Fingering in a Hele–Shaw Cell: A Weakly Nonlinear Analysis
,”
Physica D
0167-2789,
120
(
3–4
), pp.
315
328
.
24.
Tsay
,
T. S.
, and
Hoopes
,
J. A.
, 1998, “
Numerical Simulation of Ground Water Mounding and its Verification by Hele–Shaw Model
,”
Comput. Geosci.
,
24
(
10
), pp.
979
990
. 0098-3004
25.
Hansen
,
E. B.
, and
Rasmussen
,
H.
, 1999, “
A Numerical Study of Unstable Hele–Shaw Flow
,”
Comput. Math. Appl.
,
38
, pp.
217
230
. 0098-3004
26.
Xu
,
J. -J.
, 1998,
Interfacial Wave Theory of Pattern Formation
,
Springer-Verlag
,
Berlin
.
27.
Peters
,
E. J.
, and
Flock
,
D. L.
, 1979, “
The Onset of Instability During Two-Phase Immiscible Displacement in Porous Media
,”
Soc. Pet. Eng. J.
1086-055X,
SPE 8371
, pp.
1
12
.
28.
Kreider
,
D.
,
Kuller
,
R. C.
,
Ostberg
,
D. R.
, and
Perkins
,
F. W.
, 1972,
Introdução à Análise Linear
, Vol.
3
,
Editora Universidade de Brasília
,
Brasília
, p.
802
.
29.
Baptista
,
R. M.
,
Machado
,
R. A. F.
,
Quadri
,
M. B.
,
Nogueira
,
A. L.
, and
Lopes
,
T. J.
, 2004, “
Mathematical Approach to Foresee the Oil Volume Leaked from Submarine Pipelines in Case of Accident
,”
Proceedings of the International Pipeline Conference 2004
, Calgary, AL, Canada.
30.
Bentsen
,
R. G.
, 1985, “
A New Approach to Instability Theory in Porous Media
,”
Soc. Pet. Eng. J.
,
23
, pp.
765
779
. 0197-7520
31.
Coskuner
,
G.
, and
Bentsen
,
R. G.
, 1986, “
A Modified Theory for Predicting Unstable Immiscible Displacements
,”
Aostra J. Res.
,
2
(
3
), pp.
155
165
.
32.
Coskuner
,
G.
, and
Bentsen
,
R. G.
, 1988, “
A Hele–Shaw Cell Study of a New Approach to Instability Theory in Porous Media
,”
J. Can. Pet. Technol.
0021-9487,
27
, pp.
87
95
.
33.
Zettl
,
A.
, 2005,
Sturm-Liouville Theory
,
American Mathematical Society
,
Providence, RI
, p.
328
.
34.
Ayub
,
M.
, and
Bentsen
,
R. G.
, 1999, “
Interfacial Viscous Coupling: A Myth or Reality?
J. Pet. Sci. Eng.
,
23
, pp.
13
26
. 0920-4105
You do not currently have access to this content.