Fracture behavior of a high-pressure vessel for food processing under monotonic and fatigue loadings was investigated by conducting both experiments and finite element analysis (FEA) based on abaqus and zencrack software. Finite element analysis results showed that cracks nucleated at the filets of pin-hole and propagated faster near the inner surface than near the outer surface of the pressure vessel, progressively deflected, and eventually coalesced with other cracks initiated from the counter pin hole under monotonic loading. Such crack growth behavior coincided with the experimental result of hydraulic pressurizing test. Based on fatigue crack growth test of the pressure vessel material, 17-4PH stainless steel, a new equation to express the da/dNΔK curves including threshold region, has been proposed and embedded into the zencrack software to simulate the fatigue behavior of the pressure vessel. The simulation results showed that fatigue lives could be accurately estimated including low pressure range. The present simulation methods would be the useful design tool for pressure vessel under monotonic and cyclic loadings.

References

1.
Hayashi
,
R.
,
2002
, “
High Pressure in Bioscience and Biotechnology: Pure Science Encompassed in Pursuit of Value
,”
Biochim. Biophys. Acta
,
1595
(
1–2
), pp.
397
399
.
2.
Aertsen
,
A.
,
Meersman
,
F.
,
Hendrickx
,
M. E. G.
,
Vogel
,
R. F.
, and
Michiels
,
C. W.
,
2009
, “
Biotechnology Under High Pressure: Applications and Implications
,”
Trends Biotechnol.
,
27
(
7
), pp.
434
441
.
3.
Balny
,
C.
,
2006
, “
What Lies in the Future of High-Pressure Bioscience
,”
Biochim. Biophys. Acta
,
1764
(
3
), pp.
632
639
.
4.
Fonberg-Broczek
,
M.
,
Windyga
,
B.
,
Szczawiński
,
J.
,
Szczawińska
,
M.
,
Pietrzak
,
D.
, and
Prestamo
,
G.
,
2005
, “
High Pressure Processing for Food Safety
,”
Acta Biochim. Pol.
,
52
(3), pp.
721
724
.
5.
Otsuka
,
Y.
,
Fujii
,
J.
,
Takato
,
M.
, and
Mutoh
,
Y.
,
2011
, “
Fail-Safe Design by Outer Cover of High Pressure Vessel for Food Processing
,”
Open J. Saf. Sci. Technol.
,
1
(
3
), pp.
89
93
.
6.
Otsuka
,
Y.
,
Baron
,
H. B.
, and
Mutoh
,
Y.
,
2012
, “
Design Optimization of Stress Relief Grooves in Lever Guide of Pressure Vessel for Food Processing
,”
Open J. Saf. Sci. Technol.
,
1
(
1
), pp.
1
7
.
7.
Nie
,
D. F.
, and
Mutoh
,
Y.
,
2013
, “
Fatigue Limit Prediction of the Matrix of 17-4PH Stainless Steel Based on Small Crack Mechanics
,”
J. Pressure Vessel Technol.
,
135
(
2
), p.
021407
.
8.
Guo
,
F. M.
,
Feng
,
M. L.
,
Nie
,
D. F.
,
Xu
,
J. Q.
,
Bhuiyan
,
M. S.
, and
Mutoh
,
Y.
,
2013
, “
Fatigue Life Prediction of SUS630 (H900) Steel Under High Cycle Loading
,”
Acta Mech. Solida Sin.
,
26
(
6
), pp.
584
591
.
9.
Mohd
,
S.
,
Bhuiyan
,
M. S.
,
Nie
,
D. F.
,
Otsuka
,
Y.
, and
Mutoh
,
Y.
,
2013
, “
Fatigue Strength Scatter Characteristics of JIS SUS630 Stainless Steel With Duplex S–N Curve
,”
Int. J. Fatigue
,
82
(Pt.3), pp.
371
378
.
10.
Mirzadeh
,
H.
, and
Najafizadeh
,
A.
,
2009
, “
Aging Kinetics of 17-4 PH Stainless Steel
,”
Mater. Chem. Phys.
,
116
(
1
), pp.
119
124
.
11.
Wu
,
Q. G.
,
Chen
,
X. D.
,
Fan
,
Z. C.
,
Nie
,
D. F.
, and
Pan
,
J. H.
,
2015
, “
Engineering Fracture Assessment of FV520B Steel Impeller Subjected to Dynamic Loading
,”
Eng. Fract. Mech.
,
146
, pp.
210
223
.
12.
Jia
,
J. H.
,
Zhang
,
Z. Q.
, and
Zhang
,
C.
,
2015
, “
Numerical Simulation of Stress Intensity Factor for Socket Weld Toe Cracks in Small Branch Pipes
,”
Procedia Eng.
,
130
, pp.
150
157
.
13.
Yoshimura
,
S.
,
Kawate
,
H.
,
Wada
,
Y.
, and
Yagawa
,
G.
,
1999
, “
A PC-Based System for Evaluation of Three-Dimensional Stress Intensity Factors
,”
Int. J. Pressure Vessels Piping
,
76
(
8
), pp.
495
501
.
14.
Stevens
,
M. J.
,
Dennis
,
R. J.
,
Bottomley
,
I. J. M.
, and
Bradford
,
R. A. W.
,
2013
, “
Modelling the Manufacturing History, Through Life Creep-Fatigue Damage and Limiting Defect Sizes of a Pipework Joint Using Finite Element Based Methods
,”
Int. J. Pressure Vessels Piping
,
108–109
, pp.
13
27
.
15.
Abdelaziz
,
Y.
,
Bendahane
,
K.
, and
Baraka
,
A.
,
2011
, “
Extended Finite Element Modeling: Basic Review and Programming
,”
Engineering
,
3
(
7
), pp.
713
718
.
16.
Sun
,
X.
,
Chai
,
G.
, and
Bao
,
Y.
,
2017
, “
Ultimate Bearing Capacity Analysis of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shock With XFEM
,”
Eng. Failure Anal.
,
80
, pp.
102
111
.
17.
Smith, M., 2009, “
Abaqus 6.9 Analysis User's Manual
,” Simulia, Providence, RI.
18.
Maligno
,
A. R.
,
Soutis
,
C.
, and
Silberschmidt
,
V. V.
,
2013
, “
An Advanced Numerical Tool to Study Fatigue Crack Propagation in Aluminium Plates Repaired With a Composite Patch
,”
Eng. Fract. Mech.
,
99
, pp.
62
78
.
19.
Citarella
,
R.
,
Lepore
,
M.
,
Maligno
,
A.
, and
Shlyannikov
,
V.
,
2015
, “
FEM Simulation of a Crack Propagation in a Round Bar Under Combined Tension and Torsion Fatigue Loading
,”
Fratt. Integrita Strutturale
,
9
(31), pp.
138
147
.
20.
Zentech, 2009, “
Zencrack User Manual Version 7.7
,” Zentech International Ltd., London.
21.
ASTM, 2009, “
Standard Specification for Age-Hardening Stainless Steel Forgings
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM A705/A705M-95
.https://www.astm.org/Standards/A705.htm
22.
ASTM, 1990, “
Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E399-90
https://www.astm.org/Standards/E399.
23.
ASTM, 2011, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E647-11
.https://www.astm.org/Standards/E647
24.
Zehnder
,
A. T.
,
2012
,
Fracture Mechanics
,
Springer
,
New York
.
25.
Lassen
,
T.
, and
Récho
,
N.
,
2006
,
Fatigue Life Analyses of Welded Structures
,
ISTE Ltd
.,
London
.
You do not currently have access to this content.