Abstract

Fluid-elastic instability (FEI) is the most dangerous vibration mechanism in tube arrays. As the research shows in the recent years, the mechanism of FEI turns to be clear, but threshold prediction in low mass damping parameter (MDP) tube arrays is still not accurate because of the complexity of the instability mechanism. In this work, computational fluid dynamics (CFD) simulation is first validated by comparison with the water tunnel experiments in four kinds of tube arrangements and then extended to two-phase flow to get more data in low MDP range. Using fluid force coefficients calculated by CFD simulation, unsteady modeling of the tube model is established and the critical velocities match well with experiment and CFD simulation results. The effect of tube arrangement and Reynolds number on the fluid force coefficients and the predicted critical velocity is studied according to the unsteady flow theory. The results show that instability critical velocity of the normal triangular array can be underestimated at MDP lower than 1. When the frequency ratio (streamwise direction to transverse direction) decreases to below 0.8 in the rotated triangular array, the streamwise instability occurs earlier than transverse instability. The methods and conclusions in this paper can be used in FEI analysis in both streamwise direction and transverse direction.

References

1.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
,
Fisher
,
N. J.
,
Yetisir
,
M.
, and
Smith
,
B. A. W.
,
1998
, “
Flow-Induced Vibration: Recent Findings and Open Questions
,”
Nucl. Eng. Des.
,
185
(
2–3
), pp.
249
276
.10.1016/S0029-5493(98)00238-6
2.
Pettigrew
,
M. J.
,
Carlucci
,
L. N.
,
Taylor
,
C. E.
, and
Fisher
,
N. J.
,
1991
, “
Flow-Induced Vibration and Related Technologies in Nuclear Components
,”
Nucl. Eng. Des.
,
131
(
1
), pp.
81
100
.10.1016/0029-5493(91)90319-D
3.
Hassan
,
M.
, and
Mohany
,
A.
,
2013
, “
Fluidelastic Instability Modelling of Loosely Supported Multispan U-Tubes in Nuclear Steam Generators
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011306
.10.1115/1.4006854
4.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2016
, “
Modelling of Streamwise and Transverse Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
0513041
.10.1115/1.4032817
5.
Au-Yang
,
M. K.
,
1985
, “
Flow-Induced Vibration: Guidelines for Design, Diagnosis, and Troubleshooting of Common Power Plant Components
,”
ASME J. Pressure Vessel Technol.
,
107
(
4
), pp.
326
334
.10.1115/1.3264460
6.
Hassan
,
M.
,
Rogers
,
R.
, and
Gerber
,
A.
,
2010
, “
Time Domain Models for Damping-Controlled Fluidelastic Instability Forces in Multi-Span Tubes With Loose Supports
,”
ASME Paper No. FEDSM-ICNMM2010-30781
. 10.1115/FEDSM-ICNMM2010-30781
7.
Connors
,
J. H. J.
,
1978
, “
Fluidelastic Vibration of Heat Exchanger Tube Arrays
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
347
353
.
8.
Price
,
S. J.
,
Païdoussis
,
M. P.
, and
Al-Jabir
,
A. M.
,
1993
, “
Current-Induced Fluidelastic Instabilities of a Multi-Tube Flexible Riser: Theoretical Results and Comparison With Experiments
,”
ASME J. Offshore Mech. Arct. Eng.
,
115
(
4
), pp.
206
212
.10.1115/1.2920113
9.
Lever
,
J. H.
, and
Weaver
,
D. S.
,
1986
, “
On the Stability of Heat Exchanger Tube Bundles—Part II: Numerical Results and Comparison With Experiments
,”
J. Sound Vib.
,
107
(
3
), pp.
393
410
.10.1016/S0022-460X(86)80115-8
10.
Lever
,
J. H.
, and
Weaver
,
D. S.
,
1982
, “
A Theoretical Model for Fluid-Elastic Instability in Heat Exchanger Tube Bundles
,”
ASME J. Pressure Vessel Technol.
,
104
(
3
), pp.
147
158
.10.1115/1.3264196
11.
Tanaka
,
H.
, and
Takahara
,
S.
,
1981
, “
Fluid Elastic Vibration of Tube Arraay in Cross Flow
,”
J. Sound Vib.
,
77
(
1
), pp.
19
37
.10.1016/S0022-460X(81)80005-3
12.
Chen
,
S. S.
,
1975
, “
Vibration of Nuclear Fuel Bundles
,”
Nucl. Eng. Des.
,
35
, pp.
399
422
.10.1016/0029-5493(75)90071-0
13.
Chen
,
S. S.
, and
Srikantiah
,
G. S.
,
2001
, “
Motion-Dependent Fluid Force Coefficients for Tube Arrays in Crossflow
,”
ASME J. Pressure Vessel Technol.
,
123
(
4
), pp.
429
436
.10.1115/1.1401022
14.
Tanaka
,
H.
,
Takahara
,
S.
, and
Ohta
,
K.
,
1982
, “
Flow-Induced Vibration of Tube Arrays With Various Pitch-to-Diameter Ratios
,”
ASME J. Pressure Vessel Technol.
,
104
(
3
), pp.
168
174
.10.1115/1.3264199
15.
Blevins
,
R. D.
,
2018
, “
Nonproprietary Flow-Induced Vibration Analysis of San Onofre Nuclear Generating Station Replacement Steam Generators to ASME Code Section III Appendix N
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
034502
.10.1115/1.4039391
16.
Hirota
,
K.
,
Morita
,
H.
,
Hirai
,
J.
,
Iwasaki
,
A.
,
Utsumi
,
S.
,
Shimamura
,
K.
, and
Kawakami
,
R.
,
2013
, “
Investigation on in-Flow Fluidelastic Instability of an Array of Tubes
,”
ASME Paper No
. PVP2013-97163. 10.1115/PVP2013-97163
17.
Mureithi
,
N. W.
,
Zhang
,
C.
,
Ruël
,
M.
, and
Pettigrew
,
M. J.
,
2005
, “
Fluidelastic Instability Tests on an Array of Tubes Preferentially Flexible in the Flow Direction
,”
J. Fluids Struct.
,
21
(
1
), pp.
75
87
.10.1016/j.jfluidstructs.2005.03.010
18.
Olala
,
S.
, and
Mureithi
,
N. W.
,
2017
, “
Prediction of Streamwise Fluidelastic Instability of a Tube Array in Two-Phase Flow and Effect of Frequency Detuning
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031301
.10.1115/1.4034467
19.
Hassan
,
M.
, and
Weaver
,
D.
,
2017
, “
Pitch and Mass Ratio Effects on Transverse and Streamwise Fluidelastic Instability in Parallel Triangular Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061302
.10.1115/1.4037717
20.
Chen
,
S. S.
,
1983
, “
Instability Mechanisms and Stability Criteria of a Group of Circular Cylinders Subjected to Cross-Flow—Part I: Theory
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
105
(
1
), pp.
51
58
.10.1115/1.3269066
21.
Tan
,
W.
,
Li
,
Z.
,
Wu
,
H.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Zou
,
J.
, and
Zhu
,
G.
,
2018
, “
Experiment Study on Fluidelastic Instability of Tube Bundles Consisting of Different Frequency Tubes With Visual Image Processing System
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031302
.10.1115/1.4039454
22.
Hassan
,
M.
,
Gerber
,
A.
, and
Omar
,
H.
,
2010
, “
Numerical Estimation of Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041307
.10.1115/1.4002112
23.
Nakamura
,
T.
, and
Tsujita
,
T.
,
2017
, “
Study on the Stream-Wise Fluidelastic Instability of Rotated Square Arrays of Circular Cylinders Subjected on Cross-Flow
,”
ASME Paper No. PVP2017-65162
. 10.1115/PVP2017-65162
24.
Chen
,
S. S.
,
1984
, “
Guidelines for the Instability Flow Velocity of Tube Arrays in Crossflow
,”
J. Sound Vib.
,
93
(
3
), pp.
439
455
.10.1016/0022-460X(84)90340-7
25.
Weaver
,
D. S.
, and
Fitzpatrick
,
J. A.
,
1988
, “
A Review of Cross-Flow Induced Vibrations in Heat Exchanger Tube Arrays
,”
J. Fluids Struct.
,
2
(
1
), pp.
73
93
.10.1016/S0889-9746(88)90137-5
26.
Au-Yang
,
M. K.
,
Blevins
,
R. D.
, and
Mulcahy
,
T. M.
,
1991
, “
Flow-Induced Vibration Analysis of Tube Bundles—a Proposed Section III Appendix N Nonmandatory Code
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
257
267
.10.1115/1.2928753
27.
Chen
,
S. S.
,
Cai
,
Y.
, and
Srikantiah
,
G. S.
,
1998
, “
Fluid-Damping-Controlled Instability of Tubes in Crossflow
,”
J. Sound Vib.
,
217
(
5
), pp.
883
907
.10.1006/jsvi.1998.1801
28.
Tanaka
,
H.
,
Tanaka
,
K.
,
Shimizu
,
F.
, and
Takahara
,
S.
,
2002
, “
Fluidelastic Analysis of Tube Bundle Vibration in Cross Flow
,”
J. Fluids Struct.
,
16
(
1
), pp.
93
112
.10.1006/jfls.2001.0411
29.
Violette
,
R.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2005
, “
Fluidelastic Instability of an Array of Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
148
159
.10.1115/1.2138064
You do not currently have access to this content.