Abstract

The American Petroleum Institute (API) provides a series of standards and specifications on storage tanks, in which the API 12F specification provides 12 tank designs that can be fabricated in the shop and transported to the field. The nominal capacity of the 12 API 12F tank designs ranges from 90 bbl (14.3 m3) to 1000 bbl (158.99 m3). The minimum required thickness and operational pressure levels that each tank case can sustain are given in Table 1 of the current 13th edition of API 12F (API, 2019, “API 12F Specification for Shop-Welded Tanks for Storage of Production Liquids,” 13th ed., API Publishing Services, Washington, DC, Standard No. API 12F). The objective of this study is to estimate the fatigue life of API 12F tanks under normal operation pressure cycles following the procedure presented in ASME VIII-2. The stored liquid product specific gravity is assumed to be 1.2 when the liquid height is half of the tank height, while the specific gravity is assumed to be 0.7 when the stored liquid height is 18 in. (460 mm). Meanwhile, a new roof–shell attachment detail is proposed in this study, the new rectangular cleanout junction detail presented in the 13th edition of API 12F is modeled, and various component thickness combinations are considered to investigate the effect of component thickness on fatigue life. The roof–shell joint (top junction) and shell–bottom plate (bottom junction) are studied by axisymmetric models under axisymmetric idealization as they are away from the cleanout junction, while the cleanout junction is studied by applying a submodeling technique. Stress classification is performed at each location of interest to obtain the stress components to calculate the stress range within each loading cycle that is needed to perform fatigue evaluation. The results and discussion about fatigue evaluation of API 12F tanks are presented in this report.

References

1.
API
,
2019
, “API 12F Specification for Shop-Welded Tanks for Storage of Production Liquids,” 13th ed.,
API Publishing Services
,
Washington, DC
, Standard No.
API 12F
. https://law.resource.org/pub/us/cfr/ibr/002/api.12f.1994.pdf
2.
API
,
2020
, “API 650 Welded Tanks for Oil Storage,” 13th ed.,
API Publishing Services
,
Washington, DC
, Standard No.
API 650
. https://www.api.org/products-and-services/standards/important-standards-announcements/standard650
3.
ASCE
,
2017
, “Minimum Design Loads and Associated Criteria for Buildings and Other Structures,”
American Society of Civil Engineers
,
Reston, VA
, Standard No.
ASCE 7–16
. https://ascelibrary.org/doi/book/10.1061/9780784414248
4.
American Society of Mechanical Engineers and Boiler and Pressure Vessel Committee
,
2019
, “ASME Boiler and Pressure Vessels Code: An International Code Section VIII, Division 2”
ASME
, New York, Standard No.
ASME BPVC Section VIII, Division 2
.https://www.asme.org/getmedia/5e510c9c-7b1d-4b41-b485-8a14de7daf47/bpvc2019_brochure.pdf
5.
Godoy
,
L. A.
,
2016
, “
Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies
,”
Thin-Walled Struct.
,
103
, pp.
1
21
.10.1016/j.tws.2016.01.026
6.
Zingoni
,
A.
,
2015
, “
Liquid-Containment Shells of Revolution: A Review of Recent Studies on Strength, Stability and Dynamics
,”
Thin-Walled Struct.
,
87
, pp.
102
114
.10.1016/j.tws.2014.10.016
7.
Zhao
,
Y.
,
Liu
,
Q.
,
Cai
,
S.
, and
Dong
,
S.
,
2020
, “
Internal Wind Pressures and Buckling Behavior of Large Cylindrical Floating-Roof Tanks Under Various Liquid Levels
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051401
.10.1115/1.4046982
8.
Turbat
,
A.
,
2004
, “
An Overview of Cylindrical Water Tank Buckling Analysis Under Seismic Loading
,”
ASME
Paper No. ICONE12-49602.10.1115/ICONE12-49602
9.
Vathi
,
M.
,
Karamanos
,
S. A.
,
Kapogiannis
,
I. A.
, and
Spiliopoulos
,
K. V.
,
2017
, “
Performance Criteria for Liquid Storage Tanks and Piping Systems Subjected to Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051801
.10.1115/1.4036916
10.
Burgos
,
C. A.
,
Jaca
,
R. C.
,
Lassig
,
J. L.
, and
Godoy
,
L. A.
,
2014
, “
Wind Buckling of Tanks With Conical Roof Considering Shielding by Another Tank
,”
Thin-Walled Struct.
,
84
, pp.
226
240
.10.1016/j.tws.2014.06.007
11.
Burgos
,
C. A.
,
Jaca
,
R. C.
, and
Godoy
,
L. A.
,
2018
, “
Post-Buckling Behavior of Fluid-Storage Steel Horizontal Tanks
,”
Int. J. Pressure Vessels Piping
,
162
, pp.
46
51
.10.1016/j.ijpvp.2018.03.001
12.
Ismail
,
M. S.
,
Ifayefunmi
,
O.
, and
Fadzullah
,
S. H. S. M.
,
2019
, “
Buckling of Imperfect Cylinder-Cone-Cylinder Transition Under Axial Compression
,”
Thin-Walled Struct.
,
144
, p.
106250
.10.1016/j.tws.2019.106250
13.
Wu
,
J.
,
Zhu
,
J.
,
Dong
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Nonlinear Stability Analysis of Steel Cooling Towers Considering Imperfection Sensitivity
,”
Thin-Walled Struct.
,
146
, p.
106448
.10.1016/j.tws.2019.106448
14.
Gong
,
J.-G.
,
Yu
,
L.
,
Wang
,
F.
, and
Xuan
,
F.-Z.
,
2017
, “
Effect of Welding Residual Stress on the Buckling Behavior of Storage Tanks Subjected to Harmonic Settlement
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011401
.10.1115/1.4033941
15.
Dong
,
P.
,
Pei
,
X.
,
Xing
,
S.
, and
Kim
,
M. H.
,
2014
, “
A Structural Strain Method for Low-Cycle Fatigue Evaluation of Welded Components
,”
Int. J. Pressure Vessels Piping
,
119
, pp.
39
51
.10.1016/j.ijpvp.2014.03.003
16.
Cunha
,
D. J. S.
,
Benjamin
,
A. C.
,
Silva
,
R. C. C.
,
Guerreiro
,
J. N. C.
, and
Drach
,
P. R. C.
,
2014
, “
Fatigue Analysis of Corroded Pipelines Subjected to Pressure and Temperature Loadings
,”
Int. J. Pressure Vessels Piping
,
113
, pp.
15
24
.10.1016/j.ijpvp.2013.10.013
17.
Hassan
,
T.
,
Rahman
,
M.
, and
Bari
,
S.
,
2015
, “
Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Components
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031010
.10.1115/1.4029068
18.
Ravi Kiran
,
A.
,
Reddy
,
G. R.
,
Dubey
,
P. N.
, and
Agrawal
,
M. K.
,
2017
, “
Fatigue-Ratcheting Behavior of 6 in Pressurized Carbon Steel Piping Systems Under Seismic Load: Experiments and Analysis
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061801
.10.1115/1.4037809
19.
Han
,
Y.
,
1995
, “
Artificial Neural Network Technology as a Method to Evaluate the Fatigue Life of Weldments With Welding Defects
,”
Int. J. Pressure Vessels Piping
,
63
(
2
), pp.
205
209
.10.1016/0308-0161(94)00055-N
20.
Nakamura
,
H.
,
Gu
,
W.
,
Tajima
,
S.
, and
Hazama
,
O.
, “
Automated Fracture Mechanics and Fatigue Analyses Based on Three-Dimensional Finite Elements
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061406
.10.1115/1.4030085
21.
Wu
,
W.-F.
,
Liou
,
H. Y.
, and
Tse
,
H. C.
,
1997
, “
Estimation of Fatigue Damage and Fatigue Life of Components Under Random Loading
,”
Int. J. Pressure Vessels Piping
,
72
(
3
), pp.
243
249
.10.1016/S0308-0161(97)00053-7
22.
Tchankov
,
D. S.
, and
Vesselinov
,
K. V.
,
1998
, “
Fatigue Life Prediction Under Random Loading Using Total Hysteresis Energy
,”
Int. J. Pressure Vessels Piping
,
75
(
13
), pp.
955
960
.10.1016/S0308-0161(98)00100-8
23.
Zhang
,
Y.-H.
, and
Doré
,
M.
,
2018
, “
Fatigue Crack Growth Assessment Using BS 7910:2013—Background and Recommended Developments
,”
Int. J. Pressure Vessels Piping
,
168
, pp.
79
86
.10.1016/j.ijpvp.2018.09.002
24.
Dassault Systemes Simulia Corp.
,
2019
, “
ABAQUS Analysis User's Manual
,”
Dassault Systemes Simulia Corp
.,
Providence, RI
.
25.
Rondon
,
A.
, and
Guzey
,
S.
,
2017
, “
Fatigue Evaluation of the API Specification 12F Shop Welded Flat Bottom Tanks
,”
Int. J. Pressure Vessels Piping
,
149
, pp.
14
23
.10.1016/j.ijpvp.2016.11.003
26.
Rondon
,
A.
, and
Guzey
,
S.
,
2017
, “
Brittle Fracture Assessment of the API Specification 12F Shop Welded Flat Bottom Tanks
,”
Int. J. Pressure Vessels Piping
,
158
, pp.
69
78
.10.1016/j.ijpvp.2017.10.005
27.
Rondon
,
A.
, and
Guzey
,
S.
,
2017
, “
Determination of Failure Pressure Modes of the API Specification 12F Shop-Welded, Flat-Bottom Tanks
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041409
.10.1115/1.4036430
28.
Azzuni
,
E.
, and
Guzey
,
S.
,
2018
, “
Failure Modes of American Petroleum Institute 12F Tanks With a Rectangular Cleanout and Stepped Shell Design
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
061203
.10.1115/1.4041340
29.
Azzuni
,
E.
, and
Guzey
,
S.
,
2019
, “
Fatigue Evaluation of API 12D Tanks With a Semicircular-Topped Rectangular Cleanout and Stepped Shell Design
,”
Int. J. Pressure Vessels Piping
,
170
, pp.
19
29
.10.1016/j.ijpvp.2019.01.008
30.
Azzuni
,
E.
, and
Guzey
,
S.
,
2018
, “
Failure Modes of API 12D Tanks With a Semicircular-Topped Rectangular Cleanout and Stepped Shell Design
,”
Int. J. Pressure Vessels Piping
,
165
, pp.
145
163
.10.1016/j.ijpvp.2018.06.010
31.
Azzuni
,
E.
, and
Guzey
,
S.
,
2019
, “
Brittle Fracture Failure Assessment of API 12D Tanks With a Semicircular-Topped Rectangular Cleanout and Stepped Shell Design
,”
Int. J. Pressure Vessels Piping
,
175
, p.
103916
.10.1016/j.ijpvp.2019.05.011
32.
American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee, and ASME Boiler and Pressure Vessel Committee
,
2013
, ASME Boiler and Pressure Vessels Code: An International Code Section VIII, Division 2,
ASME
,
New York
, Standard No.
ASME BPVC Section VIII, Division 2
.https://files.asme.org/Catalog/Codes/PrintBook/34011.pdf
33.
American Society of Mechanical Engineers and Boiler and Pressure Vessel Committee,
2017
, “ASME Boiler & Pressure Vessel Code: An International Code Section VIII, Division 2”
ASME
,
New York
, Standard No.
ASME BPVC Section VIII, Division 2
.https://www.asme.org/getmedia/c041390f-6d23-4bf9-a953-646127cfbd51/asme-bpvc-brochure-webview.pdf
34.
ASTM,
2019
, “Specification for Carbon Structural Steel,”
ASTM International
,
West Conshohocken, PA
, Standard No.
A36/A36M-19
.https://www.astm.org/Standards/A36
35.
Hobbacher
,
A. F.
,
2016
,
Recommendations for Fatigue Design of Welded Joints and Components
, 2nd ed.,
Springer International Publishing
,
Cham, Switzerland
.
36.
API
,
2016
, “Fitness-for-Service API 579/ASME FFS-1,” 3rd ed.,
API Publishing Services
,
Washington, DC
, Standard No.
API 579/ASME FFS-1
. https://inspectioneering.com/tag/api+579
You do not currently have access to this content.