Abstract

The deformation and dynamic response of a multilayer cylindrical shell composed of an inner shell and fourteen outer layers under external blast loads of different trinitro-toluene equivalency weights were studied. A numerical model using the thermo-viscoplastic constitutive model and considering fluid–structure coupling between explosion wave and structure was developed. The displacement in axial direction and cross section, as well as the effective strain responses, were analyzed to demonstrate the potential deformation of the shell structure. Results demonstrate that different materials cause inconsistent displacement and separation to develop in the inner and outer shells. In order to address the problem that the displacement of the inner shell is hard to measure due to the shielding and covering of the outer shell, a theoretical formula for calculating the maximum displacement of the inner shell was developed. The deflection process and stress triaxiality histories of the inner shell were investigated, and the results showed that compressive stress is the primary cause of plastic deformation. Additionally, the delamination that appeared in the outer shell was discussed, and it was revealed that there are two factors of delamination: (1) Stress waves spread across adjacent layers in the opposite direction because steel belts were wound in the opposite direction between the two adjacent layers; (2) Outer layers experienced uneven compressive loads. The results will be helpful to provide a reference for the intrinsic safety design of such multilayer cylindrical structures for hydrogen storage, etc.

References

1.
Apostolou
,
D.
, and
Xydis
,
G.
,
2019
, “
A Literature Review on Hydrogen Refuelling Stations and Infrastructure. Current Status and Future Prospects
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109292
.10.1016/j.rser.2019.109292
2.
Iordache
,
I.
,
Schitea
,
D.
, and
Iordache
,
M.
,
2017
, “
Hydrogen Refueling Station Infrastructure Roll-Up, an Indicative Assessment of the Commercial Viability and Profitability
,”
Int. J. Hydrogen Energy
,
42
(
8
), pp.
4721
4732
.10.1016/j.ijhydene.2016.12.108
3.
Yanez
,
J.
,
Kuznetsov
,
M.
, and
Souto-Iglesias
,
A.
,
2015
, “
An Analysis of the Hydrogen Explosion in the Fukushima-Daiichi Accident
,”
Int. J. Hydrogen Energy
,
40
(
25
), pp.
8261
8280
.10.1016/j.ijhydene.2015.03.154
4.
Dadashzadeh
,
M.
,
Kashkarov
,
S.
,
Makarov
,
D.
, and
Molkov
,
V.
,
2018
, “
Risk Assessment Methodology for Onboard Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
43
(
12
), pp.
6462
6475
.10.1016/j.ijhydene.2018.01.195
5.
Li
,
Z. Y.
, and
Sun
,
K.
,
2019
, “
Quantified Risk Assessment on Life and Property Loss From Road Collision Vehicle Fires With Hydrogen-Fueled Tank
,”
Int. J. Green Energy
,
16
(
8
), pp.
583
589
.10.1080/15435075.2019.1598415
6.
Correa-Jullian
,
C.
, and
Groth
,
K. M.
,
2022
, “
Data Requirements for Improving the Quantitative Risk Assessment of Liquid Hydrogen Storage Systems
,”
Int. J. Hydrogen Energy
,
47
(
6
), pp.
4222
4235
.10.1016/j.ijhydene.2021.10.266
7.
Beltman
,
W. M.
,
Burcsu
,
E. N.
,
Shepherd
,
J. E.
, and
Zuhal
,
L.
,
1999
, “
The Structural Response of Cylindrical Shells to Internal Shock Loading
,”
ASME J. Pressure Vessel Technol.
,
121
(
3
), pp.
315
322
.10.1115/1.2883709
8.
Beltman
,
W. M.
, and
Shepherd
,
J. E.
,
2002
, “
Linear Elastic Response of Tubes to Internal Detonation Loading
,”
J. Sound Vib.
,
252
(
4
), pp.
617
655
.10.1006/jsvi.2001.4039
9.
Mirzaei
,
M.
,
Najafi
,
M.
, and
Niasari
,
H.
,
2015
, “
Experimental and Numerical Analysis of Dynamic Rupture of Steel Pipes Under Internal High-Speed Moving Pressures
,”
Int. J. Impact Eng.
,
85
, pp.
27
36
.10.1016/j.ijimpeng.2015.06.014
10.
Mirzaei
,
M.
,
2008
, “
On Amplification of Stress Waves in Cylindrical Tubes Under Internal Dynamic Pressures
,”
Int. J. Mech. Sci.
,
50
(
8
), pp.
1292
1303
.10.1016/j.ijmecsci.2008.05.007
11.
Cirak
,
F.
,
Deiterding
,
R.
, and
Mauch
,
S. P.
,
2007
, “
Large-Scale Fluid-Structure Interaction Simulation of Viscoplastic and Fracturing Thin-Shells Subjected to Shocks and Detonations
,”
Compos Struct
,
85
(
11–14
), pp.
1049
1065
.10.1016/j.compstruc.2006.11.014
12.
Du
,
Y.
,
Zhou
,
F.
,
Hu
,
W.
,
Ma
,
L.
,
Xu
,
C.
, and
Chen
,
G.
,
2019
, “
Dynamic Response and Crack Propagation of Pre-Flawed Square Tube Under Internal Hydrogen-Oxygen Detonation
,”
Int. J. Hydrogen Energy
,
44
(
40
), pp.
22507
22518
.10.1016/j.ijhydene.2019.03.043
13.
Du
,
Y.
,
Zhou
,
F.
,
Hu
,
W.
,
Zheng
,
L. B.
,
Ma
,
L.
, and
Zheng
,
J. Y.
,
2020
, “
Incremental Dynamic Crack Propagation of Pipe Subjected to Internal Gaseous Detonation
,”
Int. J. Impact Eng.
,
142
, p.
103580
.10.1016/j.ijimpeng.2020.103580
14.
Du
,
Y.
,
Ma
,
L.
,
Zheng
,
J. Y.
,
Zhang
,
F.
, and
Zhang
,
A. D.
,
2016
, “
Numerical Prediction on Dynamic Fracture of Tubes Subjected to Internal Gaseous Detonation
,”
Eng. Failure Anal.
,
66
, pp.
489
501
.10.1016/j.engfailanal.2016.05.007
15.
Mirzaei
,
M.
,
Harandi
,
A.
, and
Karimi
,
R.
,
2009
, “
Finite Element Analysis of Deformation and Fracture of an Exploded Gas Cylinder
,”
Eng. Failure Anal.
,
16
(
5
), pp.
1607
1615
.10.1016/j.engfailanal.2008.10.018
16.
Mirzaei
,
M.
,
Malekan
,
M.
, and
Sheibani
,
E.
,
2013
, “
Failure Analysis and Finite Element Simulation of Deformation and Fracture of an Exploded CNG Fuel Tank
,”
Eng. Failure Anal.
,
30
, pp.
91
98
.10.1016/j.engfailanal.2013.01.015
17.
Du
,
Y.
,
Ma
,
L.
,
Zheng
,
J.
,
Zhang
,
F.
, and
Zhang
,
A.
,
2016
, “
Coupled Simulation of Explosion-Driven Fracture of Cylindrical Shell Using SPH-FEM Method
,”
Int. J. Pressure Vessels Piping
,
139–140
, pp.
28
35
.10.1016/j.ijpvp.2016.03.001
18.
Cheng
,
L.
,
Ji
,
C.
,
Gao
,
F.
,
Yu
,
Y.
,
Long
,
Y.
, and
Zhou
,
Y.
,
2019
, “
Deformation and Damage of Liquid-Filled Cylindrical Shell Composite Structures Subjected to Repeated Explosion Loads: Experimental and Numerical Study
,”
Compos. Struct.
,
220
, pp.
386
401
.10.1016/j.compstruct.2019.03.083
19.
Zheng
,
J.
,
Liu
,
X.
,
Xu
,
P.
,
Liu
,
P.
,
Zhao
,
Y.
, and
Yang
,
J.
,
2012
, “
Development of High Pressure Gaseous Hydrogen Storage Technologies
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
1048
1057
.10.1016/j.ijhydene.2011.02.125
20.
Zheng
,
J. Y.
,
Li
,
L.
,
Chen
,
R.
,
Xu
,
P.
, and
Kai
,
F. M.
,
2008
, “
High Pressure Steel Storage Vessels Used in Hydrogen Refueling Station
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
014503
.10.1115/1.2826453
21.
Yu
,
T.
,
Guo
,
W.
,
Miao
,
C.
,
Zheng
,
J.
, and
Hua
,
Z.
,
2021
, “
Study on Inserted Curved Surface Coupling Phased Array Ultrasonic Inspection of Multi-Layered Steel Vessel for High-Pressure Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
46
(
35
), pp.
18433
18444
.10.1016/j.ijhydene.2021.02.226
22.
Zheng
,
J. Y.
,
Deng
,
G. D.
,
Chen
,
Y. J.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
,
Zhao
,
L. M.
, and
Li
,
Q. M.
,
2006
, “
Experimental Investigation of Discrete Multilayered Vessels Under Internal Explosion
,”
Combust., Explos. Shock Waves
,
42
(
5
), pp.
617
622
.10.1007/s10573-006-0095-6
23.
Deng
,
G.
,
Zheng
,
J.
,
Chen
,
Y.
,
Zhao
,
L.
,
Zhao
,
Y.
, and
Ma
,
L.
,
2010
, “
Anti-Explosion Capability and Scale Effect of Discrete Multi-Layered Explosion Containment Vessels
,”
Explos. Shock Waves
,
30
, pp.
215
219
.https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/8461588
24.
Zheng
,
J.
,
Chen
,
Y.
,
Deng
,
G.
, and
Wu
,
X.
,
2006
, “
Dynamic Elastic Responses of Orthotropic Double-Layered Cylinders Under Dynamic Loading
,”
ASME
Paper No. PVP2006-ICPVT-11-93504.10.1115/PVP2006-ICPVT-11-93504
25.
Wu
,
X.
,
Zheng
,
J.
,
Chen
,
Y.
,
Deng
,
G.
,
Sun
,
G.
, and
Ma
,
Y.
,
2008
, “
Dynamic Response of a Discrete Multi-Layered Cylinder Due to Thermal Shock
,”
Eng. Mech.
,
25
, pp.
109
115
.https://www.engineeringmechanics.cn/en/article/id/2651
26.
Zheng
,
J. Y.
,
Chen
,
Y. J.
,
Deng
,
G. D.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
, and
Li
,
Q. M.
,
2006
, “
Dynamic Elastic Response of an Infinite Discrete Multi-Layered Cylindrical Shell Subjected to Uniformly Distributed Pressure Pulse
,”
Int. J. Impact Eng.
,
32
(
11
), pp.
1800
1827
.10.1016/j.ijimpeng.2005.05.011
27.
Peng
,
J.
,
Peng
,
J.
,
Li
,
K.
,
Pei
,
J.
, and
Zhou
,
C.
,
2018
, “
Temperature-Dependent SRS Behavior of 316 L and Its Constitutive Model
,”
Acta Metall. Sin. (Engl. Lett.)
,
31
(
3
), pp.
234
244
.10.1007/s40195-017-0697-x
28.
Guo
,
Z.
,
Gao
,
B.
,
Guo
,
Z.
, and
Zhang
,
W.
,
2018
, “
Dynamic Constitutive Relation Based on J-C Model of Q235steel
,”
Explos. Shock Waves
,
38
(
4
), pp.
804
810
.10.11883/bzycj-2016-0333
29.
Du
,
Y.
,
Zhou
,
F.
,
Zheng
,
L.
,
Hu
,
W.
,
Liao
,
B.
,
Ma
,
L.
, and
Zheng
,
J.
,
2020
, “
Comparison of Mode-I Crack Propagation of Tube Subjected to Internal Hydrogen Static and Detonation Loading
,”
Int. J. Hydrogen Energy
,
45
(
19
), pp.
11199
11210
.10.1016/j.ijhydene.2020.02.063
30.
Yu
,
T.
, and
Qiu
,
X.
,
2011
,
Impact Dynamics
,
Tsinghua University Press
,
Beijing, China
.
31.
Li
,
S. Q.
,
Yu
,
B. L.
,
Karagiozova
,
D.
,
Liu
,
Z. F.
,
Lu
,
G. X.
, and
Wang
,
Z. H.
,
2019
, “
Experimental, Numerical, and Theoretical Studies of the Response of Short Cylindrical Stainless Steel Tubes Under Lateral Air Blast Loading
,”
Int. J. Impact Eng.
,
124
, pp.
48
60
.10.1016/j.ijimpeng.2018.10.004
You do not currently have access to this content.