Abstract

The current theoretical calculation methods for autofrettage of thick-walled tube do not adequately consider the change in the stress–strain relationship of the material with the maximum loading strain. This deficiency has an adverse impact on the accuracy of the residual stress calculation after autofrettage. In this paper, the revised kinematic hardening model is adopted to take change of the stress–strain relationship of the material in the compression section after different maximum tensile strains into consideration. Furthermore, power function is used to express the stress–strain relationship in the plastic section in both the tensile and compressive plastic parts. A new calculation method for the autofrettage residual stress of the hydraulic thick-walled straight tube is came up with through this method. This method enhances the precision of autofrettage residual stress calculations without undue increase of the computational burden. In comparison to the finite element method results utilizing identical material data, the proposed model exhibits enhanced calculation precision, particularly with regard to the stress distribution on the inner surface, surpassing by at least 5% in terms of calculation accuracy than existing calculation methods. Furthermore, the accurate autofrettage residual stress on the inner surface of thick-walled straight tubes obtained through theoretical calculations is of paramount importance for fatigue design of autofrettage thick-walled vessels.

References

1.
Dixit
,
U. S.
, and
Shufen
,
R.
,
2020
, “
Finite Element Method Modeling of Hydraulic and Thermal Autofrettage Processes
,”
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
,
V.
Silberschmidt
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
31
69
.
2.
Vullo
,
V.
,
2013
,
Circular Cylinders and Pressure Vessels Stress: Analysis and Design
,
Springer, Cham
,
Switzerland
.
3.
Rees
,
D. W. A.
,
1990
, “
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal. Eng. Des.
,
25
(
2
), pp.
109
121
.10.1243/03093247V252109
4.
Maleki
,
M.
,
Farrahi
,
G. H.
,
Jahromi
,
B. H.
, and
Hosseinian
,
E.
,
2010
, “
Residual Stress Analysis of Autofrettaged Thick-Walled Spherical Pressure Vessel
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
396
401
.10.1016/j.ijpvp.2010.04.002
5.
Webster
,
G. A.
, and
Ezeilo
,
A. N.
,
2001
, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue
,
23
, pp.
375
383
.10.1016/S0142-1123(01)00133-5
6.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1963
, “
Overstrain of High-Strength Open-End Cylinders of Intermediate Diameter Ratio
,”
Experimental Mechanics
,
B. E.
Rossi
, ed.,
Pergamon Press
, New York, pp.
335
352
.
7.
Thumser
,
R.
,
Bergmann
,
J. W.
, and
Vormwald
,
M.
,
2002
, “
Residual Stress Fields and Fatigue Analysis of Autofrettaged Parts
,”
Int. J. Pressure Vessels Piping
,
79
(
2
), pp.
113
117
.10.1016/S0308-0161(01)00137-5
8.
Mohan
,
A.
, and
Jaisingh
,
J.
,
2020
, “
Fatigue Analysis of Thermal Shrink-Fit Autofrettage in Pressure Cylinder Using Finite Element Analysis
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8606
8617
.10.1016/j.jmrt.2020.04.021
9.
Fällgren
,
C.
,
Beier
,
T.
,
Vormwald
,
M.
, and
Kleemann
,
A.
,
2022
, “
Autofrettage of High-Pressure Components Made of Ultra-High-Strength-Steel
,”
Procedia Struct. Integr.
,
37
, pp.
948
955
.10.1016/j.prostr.2022.02.030
10.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
11.
Perl
,
M.
,
Perry
,
J.
,
Aharon
,
T.
, and
Kolka
,
O.
,
2012
, “
Is There an ‘Ultimate’ Autofrettage Process?
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041001
.10.1115/1.4006780
12.
Hu
,
Z.
, and
Parker
,
A. P.
,
2019
, “
Swage Autofrettage Analysis—Current Status and Future Prospects
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
233
241
.10.1016/j.ijpvp.2019.03.007
13.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
,
UK
.
14.
Zhu
,
R.
, and
Yang
,
J.
,
1998
, “
Autofrettage of Thick Cylinders
,”
Int. J. Pressure Vessels Piping
,
75
(
6
), pp.
443
446
.10.1016/S0308-0161(98)00030-1
15.
Chen
,
P. C. T.
,
1986
, “
The Bauschinger and Hardening Effect on Residual Stresses in an Autofrettaged Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
108
(
1
), pp.
108
112
.10.1115/1.3264743
16.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.10.1016/S0308-0161(97)00002-1
17.
Livieri
,
P.
, and
Lazzarin
,
P.
,
2002
, “
Autofrettaged Cylindrical Vessels and Bauschinger Effect: An Analytical Frame for Evaluating Residual Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
38
46
.10.1115/1.1425809
18.
Huang
,
X. P.
,
2005
, “
A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material
,”
J. Strain Anal. Eng. Des.
,
40
(
6
), pp.
599
607
.10.1243/030932405X16070
19.
Molaie
,
M.
,
Darijani
,
H.
,
Bahreman
,
M.
, and
Hosseini
,
S. M.
,
2018
, “
Autofrettage of Nonlinear Strain-Hardening Cylinders Using the Proposed Analytical Solution for Stresses
,”
Int. J. Mech. Sci.
,
141
, pp.
450
460
.10.1016/j.ijmecsci.2018.04.019
20.
Faghih
,
S.
,
Jahed
,
H.
, and
Behravesh
,
S. B.
,
2018
, “
Variable Material Properties Approach: A Review on Twenty Years of Progress
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050803
.10.1115/1.4039068
21.
Jahed
,
H.
,
Sethuraman
,
R.
, and
Dubey
,
R. N.
,
1997
, “
A Variable Material Property Approach for Solving Elastic-Plastic Problems
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
285
291
.10.1016/S0308-0161(96)00079-8
22.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.10.1115/1.2842303
23.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
24.
Parker
,
A. P.
,
Troiano
,
E.
,
Underwood
,
J. H.
, and
Mossey
,
C.
,
2003
, “
Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
277
281
.10.1115/1.1593071
25.
Troiano
,
E.
,
Parker
,
A. P.
, and
Underwood
,
J. H.
,
2004
, “
Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp.
473
477
.10.1115/1.1811108
26.
Hu
,
Z.
,
Gibson
,
M. C.
, and
Parker
,
A. P.
,
2021
, “
Swage Autofrettage FEA Incorporating a User Function to Model Actual Bauschinger Effect
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104372
.10.1016/j.ijpvp.2021.104372
27.
Hu
,
Z.
, and
Puttagunta
,
S.
,
2012
, “
Computer Modeling of Internal Pressure Autofrettage Process of a Thick-Walled Cylinder With the Bauschinger Effect
,”
Am. Trans. Eng. Appl. Sci.
,
1
(
2
), pp.
143
161
.https://api.semanticscholar.org/CorpusID:202224924
28.
Hu
,
Z.
, and
Parker
,
A. P.
,
2021
, “
Implementation and Validation of True Material Constitutive Model for Accurate Modeling of Thick-Walled Cylinder Swage Autofrettage
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104378
.10.1016/j.ijpvp.2021.104378
29.
Zhang
,
Z.
,
Wang
,
X.
, and
Chen
,
Q.
,
2024
, “
Elastoplastic Mechanical Properties and Kinematic Hardening Model of 35CrNi3MoVR
,”
Materials
,
17
(
13
), p.
3223
.10.3390/ma17133223
30.
Harvey
,
J. F.
,
1985
,
Theory and Design of Pressure Vessels
,
Van Nostrand Reinhold
,
New York
.
31.
Dunne
,
F.
, and
Petrinic
,
N.
,
2005
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.