Abstract

The aim of the present study is to predict the impact force applied by an individual transient liquid slug on an elbow at the end of a horizontal and initially empty pipeline. The liquid slug is driven by pressurized air in a tank located upstream of the pipeline. The time dependent pressure distribution along the elbow and a vertical extension segment after the elbow are solved with a 1D numerical approach along a curved line mesh. An assumed and calibrated axial turbulent velocity profile function with 3D skewed shape for the slug is also used in the solution. The impact pressures and the transient forces at the elbow are computed and also compared with those obtained experimentally and numerically from previous studies. Comparisons indicate that the new method developed in the present study predict the peak pressures and/or forces with higher accuracy than the previous method proposed by other researchers.

References

1.
Bozkus
,
Z.
, and
Wiggert
,
D. C.
, 1997, “
Liquid Slug Motion in a Voided Line
,”
J. Fluids Struct.
0889-9746,
11
, pp.
947
963
.
2.
Kayhan
,
B. A.
, 2009, “
Prediction of the Transient Force Subsequent to a Liquid Mass Impact on an Elbow of an Initially Voided Line
,” Ph.D. thesis, Middle East Technical University, Ankara, Turkey.
3.
Fenton
,
R. M.
, 1989, “
The Forces at a Pipe Bend Due to Clearing of Water Trapped Upstream
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Bozkus
,
Z.
, 1991, “
The Hydrodynamics of an Individual Transient Liquid Slug in a Voided Line
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
5.
Baran
,
Ö. U.
, 1999, “
Experimental and Numerical Analysis of Transient Liquid Slug Motion in a Voided Line
,” MS thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey.
6.
Bozkus
,
Z.
,
Baran
,
Ö. U.
, and
Ger
,
M.
, 2004, “
Experimental and Numerical Analysis of Transient Liquid Slug Motion in a Voided Line
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
(
2
) pp.
241
249
.
7.
Walski
,
T. M.
, 2003,
Advanced Water Distribution Modeling and Management
,
Haestad Methods, Inc.
,
Waterburry
.
8.
Swamee
,
P. K.
, and
Jain
,
A. K.
, 1976, “
Explicit Equations for Pipe Flow Problems
,”
J. Hydraul. Eng.
0733-9429,
102
(
5
), pp.
657
664
.
9.
Moody
,
F. J.
, 1989,
Introduction to Unsteady Thermofluid Mechanics
,
Wiley
,
New York
.
10.
Prandtl
,
L.
, 1935, “
The Mechanics of Viscous Fluids
,”
Aerodynamic Theory
,
W. F.
Durand
, ed.,
Springer
,
Berlin
, Vol.
III
, p.
142
.
11.
Prandtl
,
L.
, 1933, “
Neuere Ergebnisse der Turbulenzforschung
,”
VDI Z.
77
(
5
), pp.
105
114
.
12.
Schlichting
,
H.
, 1960,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
13.
Young
,
J. R.
, 1850,
The Elements of Analytical Geometry
,
E. H. Buttler & Co.
,
Philadelphia
.
14.
Laribi
,
B.
,
Wauters
,
P.
, and
Aichouni
,
M.
, 2001, “
Experimental Study of Decay of Swirling Turbulent Pipe Flow and Its Effect on Orifice Meter Performance
,”
Proceedings of the FEDSM 2001, 2001 ASME Fluids Engineering Conference
, May 29–Jun. 1, New Orleans.
15.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
16.
Davidson
,
P. A.
, 2005,
Turbulence
,
Oxford University Press
,
New York
.
17.
Chen
,
C. J.
, and
Jaw
,
S. Y.
, 1997,
Fundamentals of Turbulence Modeling
,
Taylor & Francis
,
New York
.
18.
Zwillinger
,
D.
, 1957,
Handbook of Integration
,
Jones and Bartlett
,
Boston
.
19.
Hull
,
E. T.
,
Enright
,
H. W.
, and
Jackson
,
R. K.
, 1976, “
User’s Guide for DVERK-A Subroutine for Solving Non-Stiff ODE’s
,” Technical Report No. 100.
20.
Jackson
,
R. K.
,
Enright
,
H. W.
, and
Hull
,
E. T.
, 1977, “
Theoretical Criterion for Comparing Runge–Kutta Formulas
,” Technical Report No. 101.
21.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
, 1997,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
Philadelphia
.
22.
Mathews
,
J. H.
, 1987,
Numerical Methods
,
Prentice-Hall
,
London
.
23.
Streeter
,
V. L.
, and
Wylie
,
E. B.
, 1982,
Fluid Transients
,
FEB
,
Michigan
.
24.
Yang
,
J.
, and
Wiggert
,
D. C.
, 1998, “
Analysis of Liquid Slug Motion in a Voided Line
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
74
80
.
You do not currently have access to this content.