Abstract

Reusable spacecraft has great potential in reducing space launch cost. Structural reliability evaluation is critical for mission planning of reusable spacecraft. A dynamic reliability prognosis method based on digital twin framework is proposed for mission planning in the paper. In this method, Uncertainties integration and dynamic model updating are implemented through a dynamic Bayesian network. A maintenance point is set when the predicted structural reliability level is lower than a threshold or unexpected conditions such as landing impact occur. Then, inspected data can be assimilated by the framework to dynamically update the structural reliability. Thus, it supports dynamic adjustment of maintenance interval, early warning of structure failure, and mission planning with quantified risk. A numerical example considering single point crack growth under fatigue load and landing impact of a simplified spacecraft structure is used for demonstration. Results show that the crack size predictions can be calibrated by inspected data and its uncertainties can be reduced. The proper selection of landing impact probability in reliability prediction is helpful to control the maintenance interval. The reliability of the spacecraft can be increased through model updating with new inspected data, representing a potential lifetime extension can be realized by the proposed method.

References

1.
Graue
,
R.
,
Krisson
,
M.
,
Erdmann
,
M.
, and
Reutlinger
,
A.
,
2000
, “
Integrated Health Monitoring Approach for Reusable Cryogenic Tank Structures
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
580
585
.10.2514/2.3630
2.
Brown
,
E. N.
,
Chidambaram
,
B.
, and
Aaseng
,
G. B.
,
2005
, “
Applying Health Management Technology to the NASA Exploration System-of-Systems
,”
AIAA
Paper No. 2005-6624. 10.2514/6.2005-6624
3.
Ayo-Imoru
,
R. M.
, and
Cilliers
,
A. C.
,
2018
, “
A Survey of the State of Condition-Based Maintenance (CBM) in the Nuclear Power Industry
,”
Ann. Nucl. Energy
,
112
, pp.
177
188
.10.1016/j.anucene.2017.10.010
4.
Zhao
,
H. S.
,
Xu
,
F. H.
,
Liang
,
B. T.
,
Zhang
,
J. P.
, and
Song
,
P.
,
2019
, “
A Condition-Based Opportunistic Maintenance Strategy for Multi-Component System
,”
Struct. Health Monit.
,
18
(
1
), pp.
270
283
.10.1177/1475921717751871
5.
You
,
M. Y.
,
2019
, “
A Generalized Three-Type Lifetime Probabilistic Models-Based Hybrid Maintenance Policy With a Practical Switcher for Time-Based Preventive Maintenance and Condition-Based Maintenance
,”
Proc. Inst. Mech. Eng., Part E
,
233
(
6
), pp.
1231
1244
.10.1177/0954408919862720
6.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.10.1155/2011/154798
7.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,”
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches
,
S.
Flumerfelt
, ed.,
Springer International Publishing
, Cham,
Switzerland
, pp.
85
113
.
8.
Li
,
C. Z.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L. P.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
.10.2514/1.J055201
9.
Karve
,
P. M.
,
Guo
,
Y. L.
,
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
, and
Haile
,
M. A.
,
2020
, “
Digital Twin Approach for Damage-Tolerant Mission Planning Under Uncertainty
,”
Eng. Fract. Mech.
,
225
, p.
106766
.10.1016/j.engfracmech.2019.106766
10.
Zhou
,
X.
,
He
,
S.
,
Dong
,
L.
, and
Atluri
,
S. N.
,
2022
, “
Real-Time Prediction of Probabilistic Crack Growth With a Helicopter Component Digital Twin
,”
AIAA J.
,
60
(
4
), pp.
2555
2567
.10.2514/1.J060890
11.
Sisson
,
W.
,
Karve
,
P. M.
, and
Mahadevan
,
S.
,
2022
, “
Digital Twin Approach for Component Health-Informed Rotorcraft Flight Parameter Optimization
,”
AIAA J.
,
60
(
3
), pp.
1923
1936
.10.2514/1.J060770
12.
Liu
,
B. C.
,
Bao
,
R.
, and
Sui
,
F.
,
2021
, “
A Fatigue Damage-Cumulative Model in Peridynamics
,”
Chin. J Aeronaut.
,
34
(
2
), pp.
329
342
.10.1016/j.cja.2020.09.046
13.
Tuegel
,
E.
,
2012
, “
The Airframe Digital Twin: Some Challenges to Realization
,”
AIAA
Paper No.
2012
1812
.10.2514/6.2012-1812
14.
Wang
,
L.
,
Asher
,
I.
,
Ryan
,
K.
, and
Khan
,
G.
,
2016
, “
AIRFRAME DIGITAL TWIN (ADT), Delivery Order 0001: Scalable, Accurate, Flexible, Efficient, Robust, Prognostic and Probabilistic Individual Aircraft Tracking (SAFER-P2IAT)
,” General Electric Company, Niskayuna.
15.
Wang
,
L.
,
Asher
,
I.
,
Ryan
,
K.
,
Khan
,
G.
, and
Longtin
,
R.
,
2017
, “
AIRFRAME DIGITAL TWIN SPIRAL 1, Task Order 0002: Scalable Accurate Flexible Efficient Robust - Prognostic and Probabilistic Individual Aircraft Tracking (SAFER-P2IAT) Full Scale Wing Experiment Plans, Requirements, and Development
,” General Electric Company, Niskayuna.
16.
Anagnostou
,
E.
, and
Engel
,
S.
,
2016
, “
AIRFRAME DIGITAL TWIN (ADT), Delivery Order 0001: Prognostic and Probabilistic Individual Aircraft Tracking (P2IAT)
,” Northrop Grumman Corporation, DE.
17.
Anagnostou
,
E.
, and
Engel
,
S.
,
2017
, “
AIRFRAME DIGITAL TWIN (ADT), Delivery Order 0002: Demonstration of Prognostic and Probabilistic Individual Aircraft Tracking (P2IAT), Final Report and Appendices A (Test Requirements Document) and B (Instrumentation Plan)
,” Nothrup Grumman Corporation, DE.
18.
Millwater
,
H.
,
Ocampo
,
J.
, and
Crosby
,
N.
,
2019
, “
Probabilistic Methods for Risk Assessment of Airframe Digital Twin Structures
,”
Eng. Fract. Mech.
,
221
, p.
106674
.10.1016/j.engfracmech.2019.106674
19.
Li
,
J. W.
, and
Jiang
,
C.
,
2022
, “
A Novel Imprecise Stochastic Process Model for Time-Variant or Dynamic Uncertainty Quantification
,”
Chin. J Aeronaut.
,
35
(
9
), pp.
255
267
.10.1016/j.cja.2022.01.004
20.
Ye
,
Y. M.
,
Yang
,
Q.
,
Yang
,
F.
,
Huo
,
Y. Y.
, and
Meng
,
S. H.
,
2020
, “
Digital Twin for the Structural Health Management of Reusable Spacecraft: A Case Study
,”
Eng. Fract. Mech.
,
234
, p.
107076
.10.1016/j.engfracmech.2020.107076
21.
Amzallag
,
C.
,
Gerey
,
J. P.
,
Robert
,
J. L.
, and
Bahuaud
,
J.
,
1994
, “
Standardization of the Rainflow Counting Method for Fatigue Analysis
,”
Int. J. Fatigue
,
16
(
4
), pp.
287
293
.10.1016/0142-1123(94)90343-3
22.
Rice
,
R. C.
,
2016
,
Metallic Materials Properties Development and Standardization (MMPDS-11)
,
Battelle Memorial Institute
, OH.
23.
Rosenfeld
,
M.
,
1970
,
Effects of Environment and Complex Load History on Fatigue Life
,
ASTM International
, Philadelphia, PA.
24.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
25.
Forman
,
R. G.
,
Kearney
,
V. E.
, and
Engle
,
R. M.
,
1967
, “
Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures
,”
ASME J. Basic Eng.
,
89
(
3
), pp.
459
463
.10.1115/1.3609637
26.
Khoei
,
A. R.
,
2014
, Extended Finite Element Method: Theory and Applications, Wiley, Hoboken, NJ.
27.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Boston, MA
.
28.
Chen
,
L. Y.
,
Arzaghi
,
E.
,
Abaei
,
M. M.
,
Garaniya
,
V.
, and
Abbassi
,
R.
,
2018
, “
Condition Monitoring of Subsea Pipelines Considering Stress Observation and Structural Deterioration
,”
J. Loss Prev. Process Ind.
,
51
, pp.
178
185
.10.1016/j.jlp.2017.12.006
29.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.10.1016/j.engfracmech.2011.02.017
30.
Lee
,
D.
, and
Choi
,
D.
,
2020
, “
Analysis of the Reliability of a Starter-Generator Using a Dynamic Bayesian Network
,”
Reliab. Eng. Syst. Safety
,
195
, p.
106628
.10.1016/j.ress.2019.106628
31.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.10.1109/78.978374
32.
Holicky
,
M.
,
2009
,
Reliability Analysis for Structural Design
,
SunMedia Stellenbosch, Stellenbosch.
33.
Peng
,
Y. M.
,
Yin
,
Y.
,
Xie
,
P.
,
Wei
,
X. H.
, and
Nie
,
H.
,
2022
, “
Reliability Analysis of Arresting Hook Engaging Arresting Cable for Carrier-Based Aircraft Influenced by Multifactors
,”
Chin. J. Aeronaut.
,
36
(
1
), pp.
311
323
.10.1016/j.cja.2022.01.001
34.
Zhao
,
Y. G.
, and
Ono
,
T.
,
2001
, “
Moment Methods for Structural Reliability
,”
Struct. Safety
,
23
(
1
), pp.
47
75
.10.1016/S0167-4730(00)00027-8
35.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
You do not currently have access to this content.